@article{AIHPC_1987__4_3_275_0, author = {Ambrosetti, Antonio and Coti Zelati, Vittorio}, title = {Solutions with minimal period for hamiltonian systems in a potential well}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {275--296}, publisher = {Gauthier-Villars}, volume = {4}, number = {3}, year = {1987}, mrnumber = {898050}, zbl = {0623.58013}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1987__4_3_275_0/} }
TY - JOUR AU - Ambrosetti, Antonio AU - Coti Zelati, Vittorio TI - Solutions with minimal period for hamiltonian systems in a potential well JO - Annales de l'I.H.P. Analyse non linéaire PY - 1987 SP - 275 EP - 296 VL - 4 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1987__4_3_275_0/ LA - en ID - AIHPC_1987__4_3_275_0 ER -
%0 Journal Article %A Ambrosetti, Antonio %A Coti Zelati, Vittorio %T Solutions with minimal period for hamiltonian systems in a potential well %J Annales de l'I.H.P. Analyse non linéaire %D 1987 %P 275-296 %V 4 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1987__4_3_275_0/ %G en %F AIHPC_1987__4_3_275_0
Ambrosetti, Antonio; Coti Zelati, Vittorio. Solutions with minimal period for hamiltonian systems in a potential well. Annales de l'I.H.P. Analyse non linéaire, Tome 4 (1987) no. 3, pp. 275-296. http://archive.numdam.org/item/AIHPC_1987__4_3_275_0/
[1] Nonlinear Oscillatiations with Minimal Period, Proceed. Symp. Pure Math., Vol. 44, 1985 pp. 29-35. | MR | Zbl
,[2] Solutions of Minimal Period for a Class of Convex Hamiltonian Systems, Math. Ann., Vol. 255, 1981, pp. 405-421. | MR | Zbl
and ,[3] Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., Vol. 14, 1973, pp. 349-381. | MR | Zbl
and ,[4] Applied Nonlinear Analysis, Wiley, New York, 1984. | MR | Zbl
and ,[5] Normal Modes of a Lagrangian System Constrained in a Potential Well, Ann. LH.P. "Analyse non lineare", Vol. 1, 1984, pp. 379-400. | Numdam | MR | Zbl
,[6] Periodic Solutions of Hamiltonian Inclusions, J. Diff. Eq., Vol. 40, 1981, pp. 1-6. | MR | Zbl
,[7] Optimization and Nonsmooth Analysis, Wiley, New York, 1983. | MR | Zbl
,[8] Hamiltonian Trajectories having Prescribed Minimal Period, Comm. Pure and Appl. Math., Vol. 33, 1980, pp. 103-116. | MR | Zbl
and ,[9] Periodic Solutions to Hamiltonian Equations and a Theorem od P. Rabinowitz, J. Diff. Eq., Vol. 34, 1979, pp. 523-534. | MR | Zbl
,[10] Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. I.H.P. "Analyse non lineare", Vol. 1, 1984, pp. 19-78. | Numdam | MR | Zbl
,[11] Periodic Solutions with Prescribed Period for Convex Autonomous Hamiltonian Systems, Inv. Math. 81 (1985), pp. 155-188). | MR | Zbl
and ,[12] Periodic Solutions of Convex Hamiltonian Systems with a Quadratic Growth at the Origin and Superquadratic at Infinity, preprint, Univ. degli Studi di Roma, Roma, 1985. | MR
and ,[13] Some Results on Solutions of Minimal Period to Hamiltonian Systems, in Nonlinear Oscillations for Conservative Systems, A. AMBROSETTI Ed., Pitagora, Bologna, 1985, pp. 27-35.
and ,[14] Function Spaces, Academia, Prague, 1977. | MR | Zbl
, and ,[15] Periodic Solutions of Hamiltonian Systems, Comm. Pure and Appl. Math., Vol. 31, 1978, pp. 157-184. | MR | Zbl
,[16] Periodic Solutions of Hamiltonian Systems: a Survey, S.I.A.M. J. Math. Anal., Vol. 13, 1982, pp. 343-352. | MR | Zbl
,[17] Real Variable and Integration, B. G. Teubner, Stuttgart, 1976. | MR | Zbl
,