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On minimal laminations of the torus

V. BANGERT

Mathematisches Institute Universität Bern,
Sidlerstr. 5, CH 3012 Bern, Switzerland

Ann. Inst. Henri Poincaré,

VoL 6, n= 2, 1989, p. 95-138. Analyse non linéaire

ABSTRACT. - We investigate functions u: Rn -+ R which minimize a

variational integral u (x), where F: R" x R x R" -~ R is

periodic in (x, and uniformly convex in We restrict
attention to non-selfintersecting minimizers u, i. e. we require that the
hypersurface graph (u) c Rn+ 1 does not have selfintersections when pro-
jected into Rn + 1 ~Z" + I- For such u there exists a "rotation vector"

such that u (x) - Cl’ x is bounded. Our main result determines
the structure of the set ~a of non-selfintersecting minimizers with fixed
commensurable rotation vector a. The are classified by secondary
invariants. The projected graphs of the with certain types of

secondary invariants form foliations or laminations (i. e. foliations with

gaps) 
Key words : Z"-periodic variational problems, minimizing solutions, laminations.

RESUME. - On etudie des fonctions u : R" --~ R qui minimisent une

integrale variationelle F (x, u (x), ux (x)) dx ou F : R" x R x R" --+ R est

periodique en (x, et uniformement convexe en On s’in-
teresse aux u pour lesquelles la projection du graphe de u dans

est l’image d’une immersion injective. Cette condition
implique que u (x) - a . x soit bomee pour un a = a (u) eRn. Cet a est appele

Classification A. M. S. : 58 E 15, 58 F 18, 49 A 22.
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96 V. BANGERT

vecteur de rotation de u. Le resultat principal determine la structure de
l’ensemble forme des minim ales a vecteur de rotation a commensura-
ble. Les sont classifiees par des invariants secondaires. A près
projection dans Tit + lies graphes des a invariants secondaires d’un
certain type f orment soit un f euilletage de Tn+l soit une « lamination »
( = feuilletage a creux) de 

1. ESTRODUCTION

A minimal solution of a variational problem with integrand
F: Rn x R x R is a C1-function u: R such that

for every C1-function p: R" - R with compact support. Our main hypoth-
esis is that F be Z-periodic in the first n + 1 variables so that F can be
considered a map on T" + ~ x R~‘ where denotes the torus R" + ~ jZ" + ~.
We will study the minimal solutions without selfintersections of such
problems. The condition "u without selfintersections" means that the
hypersurface graph (u) ~ does not have nontrivial selfintersections
when projected into So we look at those minimal solutions whose
graphs could possibly occur as leaves of foliations or laminations (i. e.
foliations with gaps) of T" + 1. In this study which has been initiated by
J. Moser [12], cf also [3] and [4], the standard case is the Dirichlet

integrand Fo (x, u (x), ux (x)) = 1 2. The Fo-minimal solutions are

the harmonic functions and the ones without selfintersections are the affme
functions where 03B1~Rn, uo E R. It is a purely topological
fact that every minimal solution u without selfintersections determines a
"rotation vector" or "average slope" aeR" such that u (x) - ex. x is
bounded uniformly for all x E R". We denote by ~~ _ ~la ( F) the set of
nonselfintersecting F-minimal solutions with fixed rotation vector a. Under
appropriate conditions on F we know from [12] that for all 
and [3] shows that the graphs of functions in ~a give rise to a lamination
-possibly a foliation-on if oc = ( 1) =( -ai, ..., -a~ 1) is
rationally independent. Under our assumptions this simply means that 03B1
is totally ordered, i. e. if u, v e ~~ then either u = v or u  v or u> v every-
where on R". This paper is devoted to the study of for rationally

Annales de l’Institut Henri Poincaré - Analyse non linéaire



97MINIMAL LAMINATIONS

dependent a = { - a, 1). For such a the structure of can be much more

complicated: can contain uncountably many laminations (possibly
foliations) such that different laminations contain intersecting leaves. The
appeal of this theory is based on the fact that we can analyze this
complicated structure in detail under general hypotheses and by purely
qualitative methods. It should be noted that for 03B1~Qn and n> 1 the
complicated situation is generic, i. e. occurs for most integrands F.
On the other hand Moser shows in [13] that the "foliation"

survives (up to conjugation) small per-
turbations of Fo provided a satisfies certain Diophantine inequalities
(which, however, do not imply that a is rationally independent). But large
perturbations of F~ can also destroy such foliations, see [4]. So, for
rationally dependent oc = ( - a, 1) and n > i the complications analyzed in
this paper can be considered typical. The precise notions which enter into
this analysis are developed in the text, in particular in Sect. 3. Here we
present an informal summary of our results:

Before we start to describe the general situation we recall the case n= 1,
cf [6], Sect. 3. There we have the following possibilities for the behaviour
of a non-selfintersecting minimal solution u: R - R.

If u has rational rotation number a = p/q:
(a) periodic: graph (u) is invariant under translation by (p, q) E Z2, i. e.

(b) heteroclinic: There exist periodic u - and u + in ~a such that
lim 

x - 

If u has irrational rotation number a:

(c) quasiperiodic: The Z2-translates of graph (u) form a dense subset ofR The closure of the set of Z2-translates is a foliation whose leaves are
the graphs of functions in 

(~) generalized quasiperiodic: The closure of the set of Z2- translates of
graph (u) defines a lamination. The set of points in which the leaves
intersect the vertical coordinate axis contains and generically equals a
Cantor set.

If the dimension n is arbitrary a function can exhibit different
types of behaviour in different directions of R", e. g. u can be "periodic"
on lines with direction ei, "generalized quasiperiodic" on lines with direc-
tion e2, etc.

Only if is rationally independent we necessarily have "quasi-
periodic" or "generalized quasiperiodic" behaviour in every direction. In
Sects. 3-5 we characterize the various possibilities for the behaviour of

with rationally dependent a = ( - a, 1) by secondary invariants.
These investigations are primarily topological. In Sect. 6 we use the mini-
mality condition to show that the graphs of functions in .,ll~ with the

VoL 6, n’ 2-1989.



98 V. BANGERT

same secondary invariants do not intersect. In Sect. 7 we settle the question
of existence of minimal solutions u E with prescribed secondary invari-
ants. In particular we prove the existence of secondary laminations in the
gaps between the functions in with maximal periodicity. Moreover we
present examples for which these secondary laminations do not have gaps
and hence give rise to secondary foliations. In Sect. 8 we mention two
open problems and some partial results related to one of them.

This theory is based on the work of Morse [11] and Hedlund [7] on
geodesics on surfaces which - in different contexts and with different
motivation - was rediscovered and largely extended by Aubry/Le Daeron
[1] and Mather, cf [9] and [10]. In addition to the methods developed in
[3] we use ideas by Morse and Aubry/Le Daeron. So our main tools are
the compactness property of the set of minimal solutions derived by Moser
[12], a on the set of minimal solutions and a maximum

principle for elliptic equations.
Finally we explain two concepts which we use and which might otherwise

cause confusion. Slightly abusing terminology we will say that a subset
~V’ ~ C° (R") is a foliation of a connected open set W ~ if

(1.1) graph (u) n graph (v) =0 for all M 7~ v in ~V’,
and:

Very often we will encounter sets ~V’ ~ C° (R") such that the graphs of
the functions in .~V’ only form a "foliation with gaps". Thurston [14],
p. 373, uses the term "lamination" in this context: ~V’ ~ C° (R") is a

lamination of W c R"+ 1 if in addition to (1.1) we have

( 1. 3) U graph (u) is closed in W.

Actually, in order to exclude trivial cases we will only call ~V’ a lamina-
tion if .~V’ satisfies the following additional condition:

( 1.4) The set {u (0) R contains a Cantor set.

From topological dynamics we need the notion of a minimal set of a
group action r x X --~ X on a topological space X: A minimal set is a

smallest r-in variant nonempty closed subset of X. Following Birkhoff [5],
Chapter VII, Sect. 7, elements of a minimal set will be called (r-) recurrent.
Unfortunately we cannot avoid to use the word "minimal" also in the
completely different context of "minimal solutions". The laminations men-
tioned above will arise as minimal sets of the action of Z" + 1 (or some
subgroup thereof) on the set of minimal solutions.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



99MINIMAL LAMINATIONS

2. THE VARIATIONAL PROBLEM

In this section we describe the setting of the problem and present some
of Moser’s [12] results which are fundamental for our investigations. We
adopt the notation used in [12], [3] and [4].
The coordinates of a point in R2" + 1 will be denoted by

where

We denote by B (x, R" the euclidean ball with raduis r and center
The integrand of the variational problem is a function F: R2" + 1 -~ R

with the following properties, cf [12], (3.1).
for some E > 0.

( F2) F is Zn + 1 _periodic in x, i. e.

and

If R" is measurable and u is in the Sobolev space Wtdc2 (Rn) we
abbreviate

provided the integral exists as an extended real number.

Example. - The standard case is the Dirichlet integrand

Fo(x, p)=1 2|p| Then I (u, Q) is the Dirichlet integral of u over Q.
If R" is open let (Q) denote the set of all (p E W1, 2loc (Q) with

compact support.

(2.1) DEFINITION. - A function is a minimal solution of
the variational problem (briefly: u is minimal) if for all p E (Rn)

supp (~)) >__ I (u, supp (cp))
If Q eRn is open we say that (~) is minimal in Q if this

inequality is true for all cp E (Q).
Example. - For the Dirichlet integrand minimality is equivalent to

harmonicity.

Vol. 6, n° 2-1989.



100 V. BANGERT

The regularity theory for minima u of our variational problem is quite
delicate, cf. the remarks and references in [12]:

If and 1 >_ 2 then One of our main tools is
the following maximum principle:

(2.2) LEMMA. - S uppose u and v are minimal in the connected open set

then either u = v or u  v.
A detailed proof of (2.2) is given in [12], Sect. 4.
We consider the following T on C° 

This action corresponds to translation of graph (u):
graph (Tku) = graph (u) + k. According to the Zn+1-periodicity (F2) of F

the action T maps minimal solutions to minimal solutions.

We partially order by defining u  v if and only if u (x)  v (x)
for all x E R". Note that T preserves this order.

(2.4) DEFINITION. - A function is said not to have selfintersec-
tions if the T-orbit of u is totally ordered, i. e. if f or all k~Zn+1we have

or 

Geometrically this condition means that any two translates of graph (u)
by integer vectors are either disj oint or identical.

other words the proj ection of graph (u) into T" + 1= R" + 1 ~zn + 1 does
t have nontrivial selfintersections. If u ~ C° (R") does not have selfinter-

tions there exists a unique aeR", "the rotation vector of u", such that
~ u (x) - a ~ x ~ is bounded, cf [12], Sect. 2 or [3], Sect. 4 or Sect. 3 of this
paper.

~2.5) NOTATION. - We let ~ _ ~ (F) denote the set of minimal solu-
tions without selfintersection. -4f decomposes into the disjoint union

~l ~ where consists of the with rotation vector a.
03B1 ~ Rn

An important property of ~ll and of the is their T-invariance.

Example. - If Fo is the Dirichlet integrand then

This is a consequence of Liouville’s Theorem. According to [12], Theorem
2.3, this is true more generally if F only depends on p.
Next we state Moser’s estimates which are basic for everything to come,

cf [12], Theorems 2.1 and 3.1.

Annales de I’lnstitut Henri Poincaré - Analyse non linéaire



101MINIMAL LAMINATIONS

THEOREM. - There exist constants ci, such that for all u E 

Here c 1 only depends on F while 03B31 depends on F and a !.
In particular, all are Lipschitz with constant Yi. As a simple

consequence of (2.7) we obtain:

(2.8) COROLLARY. - Every sequence ui with ui E and both |ui (0)| and
I 03B1i| bounded contains a subsequence which is C1-convergent on compact sets
to some u E -6.

In particular, the sets  and 03B1, 03B1~Rn, are closed with respect to C1-
convergence on compact sets.

3. SECONDARY INVARIANTS
FOR GRAPHS WITHOUT SELF1NTERSECTIONS

According to [3], Sect. 4 the rotation vector 03B1~Rn of a nonselfintersect-
ing is characterized by the following property (where
a:=(-a, 

and then Tk u > u.
However, if and there are examples with Tk u > u

or Tk u = u or In this section we define secondary invariants of u
which completely determine which of the above possibilities holds for any

with Of course, this is nontrivial only if a is
rationally dependent, i. e. if there exist with k. a = o.
There is a close relation between nonselfintersecting U E CO (Rn) and

orbits of n commuting circle homeomorphisms, i. e. orbits of a Z"-action
on S~ by homeomorphisms. The invariants are also defined for such an
orbit and they describe how the orbit converges to the minimal set of the
action ( if a If u these invariants allow us to investigate
the action of T on the closure of the orbit The results in
this section generalize those of [3], Sect. 4. They are fundamental for the
uniqueness and existence results in Sects. 6 and 7.

If U E CO (Rn) does not have selfintersections we define

Then r + is a semigroup and The following
lemma shows that such semigroups are always the intersection of 
with some halfspace:

( 3 .1 ) LEMMA. - Let V be a finite-dimensional euclidean vector space and

Vol. 6, n‘ 2-1989.



102 V. BANGERT

rc:va lattice, i. e. r is a discrete sub-group of (V, + ) with rk (I~ = dim 
Suppose is a semigroup such that r + LJ ( - r + ) = r. Then either

r + = r or there exists a unique unit vector a E V such that

Proof. - This is an invariant version of [3], Lemma (4. 1). The proof
given there applies also in the present situation if the following little

remark is added:

In the present form the lemma can be applied iteratively. For r and
r + as above consider r2 = ~ k E r’ k ~ a = 0 ~ and 
with the induced scalar product. For we have

( - I-’2 ) = r2 so that we can apply (3 . 1) to V2 and r2, r2 .
Inductively we obtain:

(3.2) LEMMA. - Let V, r and r + satisfy the hypotheses of (3. 1 ) and
suppose r + c r. Then there exist an integer t, 1 _ t _ dim V, and unit vectors

a i , ... , at with ..., as -1 ~ 1) ( 1  s _ t) which are

uniquely determined by the following properties:
(a) if and only if there exists 1 - s _ t such that

k~0393 ~  a 1, ... , as-1> and 
(b) ..., at ~ 1.
Here we denote by span (r) the smallest linear subs pace of V containing

r and by  ai, ... , a~ ~1 the orthogonal complement of the linear subspace
generated by a 1, ..., at.
Now suppose does not have selfintersections. We set

From Lemma ( 3 . 2) we obtain an

integer t = t (u), and pairwise orthogonal unit vectors
- ~t~ = a i (u), ..., at = at (u) in .

Note that al ’ en+ 1 > 0 according to [3], Lemma (4. 1).

_ (3.3) DEFINITION. - The integer t = t (u) and the vectors al (u), ... , at (u)
_ are the invariants of a nonselfintersecting U E C° (R").

. In addition to being pairwise orthogonal the a1 (u), ..., have the

_- following property which is a direct consequence of their definition. If we
set

then

Annales de l’Institut Henri Poincaré - Analyse non linéaire



103MINIMAL LAMINATIONS

For notational convenience we set h1 (u) = Zit + so that (3. 5) holds also
for s =1. Note that Moser [12], p. 253, calls subgroups maximal

if (~ span (r). In this sense the rs(u) are maximal. According to
(3.2) the invariants t, ai, ... , at are characterized by the following
properties:

(3.6) Tk u > u if and only if there exists 1 s t
such that ~E rs and 0.

(3.7) Tku=u if and only if 

Remarks:

1. Invariance under the T-action: For all we have

a1 (Tku)=a1 (u), ..., at(Tku)=at(u).
2. If then the projection of graph (u) into

.L" + ~ = Rn + IIZn + I is an immersed submanifold of type 
3. If ii is rationally independent, i. e. if I-’2 = ~ 0 ~, then t =1.
4. In [12], Sect. 2, or [3], Sect. 4, the "rotation vector" or "average

slope" a E Rn of a nonselfintersecting U E CO (Rn) is defined. According to
[3], Lemma (4. 1), the rotation vector a and the invariant ai are related

1 ) .
If this relation is fulfilled we will say that the invariant al and the

rotation vector a correspond to each other.
For completeness we add a proof that ( 3 . 6) implies the boundedness

of This shows that a1 is a "mean unit normal" to graph (u).

(3 . 8) LEMMA. - Suppose has no selfintersections and

1). Then

Proof - Given x~Rn choose such that If

choose such that 

satisfies 0  a - k  1. Then (3.6) implies

Hence

Since this proves our claim. The case

is analogous.
The invariants t, al, ..., ar can be similarly defined for an orbit of an

action A: Z" x R - R of Zn on R by "circle maps", i. e.

Vol. 6, n= 2-1989.



104 V. BANGERT

A (k, . ) = A~ : R -~ R is continuous, strictly increasing and

At(s+ 1) = Ak (s) + 1 for all sER. The orbit of A through uo~R is the
"sequence" defined by Now such an orbit has a similar

"no self intersection property" as the restriction of a nonselfintersecting
to Z’~ : For we define

with .

Then f or either

> (Uj) or (Uj) or ’Tk ((u~))  (Uj).
So we can use Lemma (3.2) to obtain invariants t, ai, ... , at f or such

an orbit which coincide with t (u), ..., at(u) if for

a nonselfintersecting Note that where oc = ( - a, 1)
and a E R" is the rotation vector of A, i. e. the components a; of a are the
rotation numbers of the circle maps A .).

So al only depends on A while for s> 1 the as depend on the choice of
a particular orbit of A.

These invariants determine how the orbit converges to more

and more periodic orbits of A. For minimal solutions these things
are treated in Sect. 4.

We will give a special name to those systems al, ... , at of unit vectors
which can arise as invariants of a nonselfintersecting U E C° 

(3.9) DEFINITION. - A system (a 1, ..., at) of unit vectors in RlJ+1 is
admissible if a 1 ’ en + 1 > o and if f or 2 - s _ t:

asE span where a~) a I, ..., as _ 1 ~ 1.
If (a1’ ..., at) is admissible and 1  s  t then (ai, ..., aJ is admissible.
It is probably an elementary exercise to construct a nonselfintersecting

with invariants t (u) = t, ..., f or a given
admissible system a1, ..., at. However we do not have to face this

problem since the existence results for minimal solutions in Sect. 7 prove
the existence of such u.

Now we investigate continuity properties of the as(u) as a function of
the nonselfintersecting This is easy in the case s = 1 :

(3.10) LEMMA. - Suppose the sequence converges pointwise
to U E CO (RIt) and u and the u= do not have selfintersections. Then we have
lim a ~ (ui) = a 1 (u)..

Remark. - In [12], Lemma (3.4), a weaker statement is proved for
minimal solutions.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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proof - we argue by contradiction and assume that the sequence
has a point of accumulation JeS" such that Since

is dense in S" there exists such that

f. a1 (u) > 0 while f. a  0. Hence Tk u > u while Tk ui  ui for infinitely many
i E N. This contradicts the pointwise convergence of Ui to u.
For s > 1 the situation gets much more complicated. This has to do with

the fact that e. g. r1  does not depend continuously on So

we will only treat a special case. The following lemma characterizes as by
a slightly weaker property than (3. 6).

(3.11) LEMMA. - Let not have selfintersections. Suppose for
some s _ t {u) there exists a unit vector such that 

and k. a > 0 imply Tk u >_ u. Then a = a~ (u).

Proof. - If there exists such that 
Now our hypothesis implies while the definition of as (u) gives

Hence we must have 

(3 .12) COROLLARY. - Suppose the sequence u~ E C° (RJ converges point-
wise to U E C° (Rn) and u and the ui do not have selfintersections. If t (ui) = t
and 1 - s  t and all iEN then t (u)  t and aS (u) = as for
all 1 _ s _ t (u).

Proof A ccording to ( 3 . 10) we have a ~ Moreover Tk u _>_ u if

n « ..., and f or some 1  s _ t. By induction
(3.11) implies f or t (u) ~ . Finally we have t (u)  t
since for all 

..., at ~1).

4. APPLICATIONS
TO THE SET OF MINIMAL SOLUTIONS

In this section we return to our original problem and consider the set
~ = U of minimal solutions without selfintersections with respect to

03B1 ~ Rn

some integrand F satisf ying (F 1) - (F 4). If oc = ( - a, 1) is rationally depen-
dent we can use the invariants defined in the previous section to subdivide

into T-invariant subsets .~ (ai, ..., at), see (4. 1) below.
We will study how a given ..., at) converges to elements u -,

u + E .,ll (a 1, ... , Since the graphs of u - and u + are
invariant under rt they are more periodic than graph(u) which is only

Vol. 6, n= 2-1989.
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invariant under I’t + 1= ht (~ ~ ar ~ 1. Our arguments are basically topologi-
cal and minimality is only used in form of the compactness properties
(2. ~-{2. 8) of 

( 4 . 1 ) DEFINITION. - For every admissible system ( a 1, ..., at) we define

..., and as (u) = as for 
Note that ..., at) (~ -6 (a 1, ..., as) = QS if t ~ s.
First we clarify the relation of ~ (al, ..., at) to the sets r

defined in [3], Sects. 3 and 4. Recall that a1 (u) and the corresponding
rotation vector a of u are related where x = ( - a, 1). Hence
for this a e R":

Lemma (4. 6) in [3] says precisely that for a E the unique minimal
set of the action T on is contained in For generic
integrand F one will have If aeQ", a 1= ~ a ~ -1 a, then

(a1) by definition. 
_ _

For a given admissible system (a1’ ..., at) the sets ..., as),
1 _ s _ t, consist of minimal solutions whose graphs are invariant under
rs. So this periodicity increases when s decreases and -4f (a1) consists of
those whose graph has maximal periodicity. Note that (3.10) and
(3 .12) imply that ~’ (al) (al, a2) U ... (al, ..., at) is closed
in ~.
Next we investigate the action of

on ..., ar). Recall that on  we use the topology of C1-
convergence on compact sets.

(4. 2) PROPOSITION. - Suppose u E ~ (al, ..., at) and t > 1. Then there
exist u - and u + in ~ (a 1, . ... , at _ 1 ) with the following properties:

(a) If ki~0393t and lim ± ~ then 

(b) u -  u  u + and ?_ u + if k~0393s and for some 
(c) If lim sequence ki~0393t such that ki.at is bounded then

v E.A ..., at).
Proof If k 1, ~2 E Zn + 1 satisfy a 1  o  k 2 - a 1 then we have

for all KErr This follows from (3 . 6) applied to and ~2 - ~. Now
Moser’s compactness result ( 2 . 8) implies that the 0393t-orbit {Tku|k~0393t} is

precompact. Using (3.6) again we see that every sequence with k= E ri
and lim converges to the same limit, called Similarly

Annales de l’Institut Henri Poincaré - Analyse non linéaire



107MINIMAL LAMINATIONS

we obtain u - Next we prove ( b) :
If for some then k - 2 k1 E I-’s and

( k - 2 k ~) - as > 0 f or every sequence k i in hr with Hence
for all i~N. In the limit this implies > u +, and, in

particular, and So, in order to prove that

u ± E ~l (ai, ..- , ar _ 1) it is left to show for all If 
and if lim = oo then lim ( k + k i) - at = oo . Hence

and similarly for u-. To prove (c) note that there exist ~1, such
that Together with ( a) and ( b) this implies if and

only if Tku>u. Hence ..., at).

(4.3) NOTATION. - For ..., at) we fix the notation u - and
u + for the elements ... , at _ 1 ) defined by: u- =lim for

every sequence ki in rt with u + = lim. Tki u for every
sequence R in rt with lim 

’

Now we investigate what the convergence in (4.2) (a) means for the
functions u and u ± themselves. Let p : Rn + 1 --~ R" denote the projection
x = {x, xn + 1) ~ x. For an admissible system ..., a~) and 2 __ s _ t we
introduce the following

(4 . 4) 
V~ = span (span We let bs denote the unique vector in V~ such
that

for all k = (k, kn+ 1 ) E 

Remarks. - 1. Since and the projection p is

injective on span and dim (h~.
2. One can calculate bs as the orthogonal projection of a to

Vs where We have since and as ~ 0.
3. Since and rs c (ai, ..., we have and

... , b~ _ 1 >1.
The following lemma is basic for many arguments in this and the

following sections.

(4. 5) LEMMA. - Let (ai, ..., admissible, let E be a measurable
fundamental domain for and let ~t denote the orthogonal projection
nt : R~‘ --~ Vr. Suppose u, v E C° (R") have the following property: 1 f 1 _ s  t

and k~0393s and then Tku>v.
7hen

VoL 6, ir 2-1989.
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Remark. - If (ai, ..., at) then the hypothesis of (4. 5) is fulfilled
for u- and u+.

Proof. - Set W = { (x, and 
We claim that for all Assume to the

contrary that x=(x, and for some In

particular and This implies since other-
wise But for our hypothesis implies either

or i.e.

From  v (x) we obtain

Hence which contradicts our assumption. So the projection
~ : R~ + ~ is injective on W. This implies our claim:

(4. 6) COROLLARY. - Suppose ..., at) and t > 1. For all E > 0
there exists C > 0 such that dist ( x, implies (u + - u - ) (x)  E.
Proof - Let E be a measurable fundamental domain for vt/rt. Since

u + and u - are in ..., their difference u + - u - is rt-periodic.
Hence it suffices to prove our claim for where Xl EE and
x2 E (Vr)1, I x2 ~ > C. According to the remark following Lemma (4.5) we
can apply (4. 5) to u - and u +. Hence:

By Moser’s estimate (2 . 7) u - and u + are Lipschitz. Hence the preceding
inequality proves our claim.

Thus, if ..., at) then u -, u + and u all converge to each other
in directions not contained in Vt. The following proposition investigates
the situation for the remaining directions.

(4 . 7) Suppose ..., at). For every E>O there
exists C > 0 such that u + if x - bt -C and u (x) - u - (x)  E if

For every D>O there exists S > 0 such that u + (xj - u (x) > ~ and
u (x) - u - (x) > s if x~Vt and Ix.btl D.
Proof - We decompose where x1~Vt and 

According to (4.6) it suffices to treat the case for some

C 1= C 1 (~) > o. We argue by contradiction and assume that there exists a
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sequence + xi in R" such that

Since Vt = span we can find a sequence y i in a bounded fundamental
domain of vt/rt and a sequence ki=(ki, kin+1)~0393t such that xi 
Then

so that converges to u - unif ormly on compact sets. Since the

points are contained in a compact set and we con-

dude that

converges to zero. This contradicts our assumption (x~ ? E.
The second assertion is proved similarly: One uses that every sequence

Tki u with and bounded contains a convergent subsequence
with limit v satisfying u -  v  u +.

If u E v E and then we can conclude from (2. 6) that there
exists xERn with u (x) = v (x). For the secondary invariants we obtain:

= v + and u - = v - there exist points x~Rn with u (x) = v (x).

Remark. - Theorems (6.6) and (6.13) show that either u + = v +, u - = v -
or u +  v - or v + _ u - . Hence, if our assumption u + = v +, u - = v - is not
satisfied then u  v or v  u. Moreover, Theorem (6.6) shows that u - = v -
implies u + --- v + and vice versa. A generalization of (4. 8) will be discussed
at the end of Sect. 6.

Proof - Let ..., and let bt resp. bi
be the vectors in Vt such that all 
First suppose that ht and b’t are linearly independent. Then there exist
lines {xo+tr with v - br = 0 and v - bt ~ o. According to Pro-
position (4.7) every such line contains a point x with u (x) = v (x). Next
we consider the case that bt and br are linearly dependent. Since at is

uniquely determined by the and since this set is

uniquely determined by the direction of bt the vectors bt and bi can be
linearly dependent only if in which case 

Hence Proposition (4. 7) implies that every line in Vt with direction bt
contains a point x with u (x) = v (x).
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If t>2 we can iterate the construction of u - and u + to obtain

( u - ) -  (u - ) + and ( u + ) -  (u + ) + in ..., at-2). It is a simple conse-
quence of (4.2) ( a) and ( b) that ( u - ) - _ (u + ) - and ( u - ) + _ (u + ) + . If t > 3
one can continue the iteration and consider ((u - ) - ) -, etc. Since the proofs
in Sects. 6 and 7 are by induction we will not need these higher iterates.
However, they may be useful to clarify the geometric meaning of the
invariants a2, ... , at and the corresponding b2, ... , bt. The proofs of the
following statements are left to the reader.

According to (4. 2) (a) we have

This leads us to define (for 1  s  t)

Then we have ut Z = (u + ) +, etc.
In analogy to (4.2) ( a) and ( b) we obtain:

(4.9) If and then 

( 4 . 10) If and k - aa > 0 then T k (us) >__ us .
From (4. 9) and (4. 10) we can derive the following analogue of (4.7):
For every E > 0’ there exists C > 0 such that us {x) - u (x)  E if

x . bs + 1  - C and u (x) - us (x)  E if 
So we obtain the following picture: There exists a finite sequence

U1 - u2  ... ut_1=u- uu+ ... 

where us ..., as) satisfies (4 . 9) and {4 . 10). In particular,
graph(u/) is invariant under 1, i. e. the periodicity of graph (us )
decreases monotonically with s. The original u and all u: for 03C3>s con-
verge to u; on halflines which are not orthogonal to bs or do not lie
in V,

5. SECONDARY LAMINATIONS

In this section we study the action of ..., at _ 1 ~1)
on an arbitrary ..., at), t > 1.
From the preceding paragraph we know that the rt-orbit of u has u+

as its supremum and u - as its infiunum.
If rk ( I~’r + z ) = rk (I-’~) -1 then the rt-orbit of u is discrete.
If rk (I’t+ ~)  rk (I~‘t) -1 then this orbit is not discrete and we study its

closure The graphs of functions in laminate (or even foliate)
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the set between the graphs of u - and u + . We will call this a "secondary
lamination" since for irrational a this lamination is contained in a gap of
the lamination { graph (v) v E 

Actually we may have a finite hierarchy of laminations, one laminating
the gaps of the next and so on. However, all except the one given by

will be called secondary. Obviously the union of all such laminations
derived from u and its translates is the closure of the Z" + I-orbit of u and
a laminatipn itself. However, the point is that may very well form
a lamination even if the corresponding rotation vector a is rational so
that ~l (a 1) will in general be discrete.
We start by treating the simple case 

(5.1) LEMMA. - ..., at) and then the

0393t-orbit of u is discrete.

Proof - Since h : r’t --~ R, a~, is a homomorphism with kernel
rt+ 1 its is a finitely generated subgroup of (R, +) of
rank 1, hence discrete. Now our claim follows easily from the facts that

and that, by (4. 2) (b),

In analogy to [3], (4. 3) we define:

(5. 2) DEFINITION. - Suppose ..., ar). We say that u can be
approximated from below, resp. from above, if

resp. if

The set of all ..., ut) which can be approximated from above
or from below is denoted by rec (ul, ..., ar)-
Remarks. - 1. We have ..., at) if and only if

..., ax) and u is not an isolated point in its 0393t-orbit.
2. then (at, ..., = 0.

a is the rotation vector corresponding to al.
NOTATION. - For 

..., we let denote the closure
of the inside the set 
We set 

..., aJ.
So consists of the limits of sequences where and 

remains bounded. 
’

(5. 3) LEMMA. - Suppose u E (al, ..., at) can be approximated from
below, v E .,ll (a 1, ..., u -  v  u + and (u) ~ (v) is totally ordered.
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Then

Remark. - A similar statement holds if u can be approximated from
above.

Statement and proof of (5.3) are analogous to [3], (4.4).

( 5 . 4) LEMMA. - Suppose u E (a 1, ..., at) and rk 1 )  rk (rt) -1.
Then (u) ~ ~ ..., at) and (u) ~ 0. We have v E (u) if and
only if u -  v  u + and v is a point of accumulation of is

the unique minimal set of the action of on (u).

Proof - Suppose where and ki. at is bounded, i. e.
u -  v  u + . We want to show that ..., at). According to (3.12)
we have t (v) _ t and as (v) = as for On the other hand
u -  v  u + and (4.2) (b) imply So it suffices to prove that

t (v) >_ t and at (v) = at. So suppose ..., ar _ 1) is given and
k - ar > 0. Since v  u + and lim T nk U = U + there exists n e N such that

We may also assume that for all ieN. Then we
obtain

Since this implies t (v) >-_ t. Moreover we obtain for all
with ~- at > 0. Hence at (v) = ar.

Next we show that ~r e~ (u) ~ QS. Since and
the subgroup {k.at|k~0393t} of (R, + ) has rank > 2 so

that it cannot be discrete. Hence there exists a sequence E rt such that
and lim at = o. According to (2. 8) the sequence Tki u has a

limit point v, u -  v  u +, which is a point of accumulation of So,
in order to prove that {u) ~ Qf it suffices to prove that an arbitrary
point of accumulation v of with u -  v  u + belongs to We
treat the case that v = lim Tki u and Tj.. u  v for all i E N.

We set If vv there exist k, h~0393t
such that in particular ( ~- ~ - at > o. Hence

and this is easily seen to contradict the definition ofr
Hence v = v, i. e. v can be approximated from below. Conversely if

then v is a point of accumulation of by (5.3). Similarly
the last claim of ( 5 . 4) follows from ( 5 . 3). 

_

Next we prove that for ..., aJ and the

set (u) gives rise to a lamination of

Note that (u) is totally ordered so that ( 1.1) is satisfied. Using
Lemma (4 . 2) (c) we easily see is closed
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in W. So we only have to prove:

(5.5) PROPOSITION. 2014 suppose u Evil (a 1, ..., at) and rk (ht + 1 )  rk (0393t)20141.
Then the map H : ~ (u- (0), u+ (0))  R, H(v): = v (o), is a homeo-
morphism either onto (u - (0), u + (0)) or onto a Cantor set in (u - (0), u + (0)).

Proof - Obviously H is a homeomorphism onto its image Im (H) and
by (5. 4). From (2. 8) and (5. 4) one easily concludes that

Im (H) U { u - (0), u + (o) ~ ~ R is compact. In particular Im (H) is closed
in (u - (0), u + (0)). According to the definition of ..., aJ we do
not have isolated points in So it remains to prove that

Im (H) _ (u - (o), u + (o)) if Im(H) contains a nonempty open interval I.
Since Im (H) is closed all we have to show is that Im (H) is open. So let
v (0) E Im ( H) be an arbitrary point. On Im ( H) we have the induced
reaction T, (0) = u ( It follows from (5. 3) that
the T-orbit of v(0) is dense in Im (H). In particular, there exists 
such that Tk (v (o)) E I. Hence v(0) is contained in the open interval

~ Im (H).
We are still considering ..., ar) with 

Next we will show that the action of rt (u) is semiconjugate to the
action of rt on R defined by s E R - s + ~~ at.

( 5 . 6) PROPOSITION. - Let h : (u) -R be defined by

Then and h is continuous, nondecreasing
and satisfies for all k~0393t,

If v can be approximated from below, resp. from above, then

Proof - While and follows directly
from the definitions the reversed inequality can easily be proved using the
fact that is dense in R. Using this density again the definition
of h shows that h is continuous from the left while our first claim shows
that h is continuous from the right as well.
Obviously h is nondecreasing and

Finally suppose can be approximated from below and w  v for
some According to (5 . 3) there exist k, h~0393t such that

This implies h (w)  ~~ at   h (v).
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The following corollary is an analogue of [3], (4.7) and will be an
important tool in Sect. 6.

(5.7) COROLLARY. - Suppose u, ..., at) can both be appro-
ximated from below. Let sequences ki, ~~ in be given such that

Then we have : lim Th; v = v.

Proof. - The key observation is that the actions of on .~l r (u)
and (v) are both semi-conj ugate to the same action of ht on R. Let
h~: ~l t (u) ~ R resp. h": ~l t (v) --~ R be the f unctions defined in { 5 . 6) . ~ur
hypotheses lim Tki u = u, lim Tk~ v = v imply hu (u) = l~m ki - at = hv (v~.
On the other hand we have 0 = hu (u) = lim hu (Thi u) (u) an

hence lim hi - at = -lim k i - ar = - h" (v~ . Since u can be approximated f rom
below the last statement in { 5 . fi) shows that T~~ u  u implies

So

hence

Since hv is nondecreasing this implies Now v can be approxi-
mated from below and

using the last statement in (5.6) again we see that this implies
lim Th v= v.

For completeness we recall what happens in the case t = 1, i. e. u E 
which was excluded up to now.

If a is rational we have ~ (ai) _ and the 1-orbit of u is discrete.
If a is irrational then the set of accumulation points of the Z" + 1-orbit
of u is the unique minimal set of the Z" + 1-action T on ~a.

This follows from [3], (5.2) and some simple additional arguments.
As we remarked earlier for generic F one will have ~ (a 1 ) _ ~~ ‘~ so

that u itself belongs to the minimal set 

6. UNIQUENESS RESULTS

In this section our main goal is to prove that for every admissible system
..., ui) the set ~ ( a 1 ) U... ..., at) is totally ordered. This

can be thought of as a uniqueness result since it tells us that for even
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x=(x, there is at most one

such that 

However, there is a different way to look upon this as a uniqueness
result: It shows that for every ..., ar) the set (u) which
gives rise to the secondary laminations considered in Sect. 5 does not

depend on u and equals the set of v~ rec (al, ..., at) with u -  v c u +.
The results and the proofs in this section are generalizations of those given
in [3]. The existence results in the next section will rely on the uniqueness
results obtained here.
We introduce the following abbreviations for functions u {R"),

and measurable sets 

provided this integral exists as an extended real number.

So A (u, cp, Q) is the amount by which the integral for u + (p over Q exceeds
the integral for u over Q. D ( u, Q) tells us by how much we can reduce
the integral for u over Q by variations of u compactly supported in Q. In
particular, u is minimal in Q if and only if

or if and only if D (u, Q)=0. Obviously I (u, Q), A(u, tp, Q) and D (u, Q)
are additive in Q.

In all the proofs in this section the essential point is to show that the
graphs of two minimals with certain properties cannot intersect.
In order to motivate the estimates which we will derive we start with a
lemma which represents the final step in most proofs in this section.

Roughly, the idea is as follows: If u ~ v are minimal and u (xo) = v (xo)
then - by the maximum principle ( 2 . 2) - max ( u, v) and min(u, v) are not
minimal. We will prove that the amount

by which we can reduce the integrals
I (max (u, v), B (xo, R)), I (min (u, v), B (xo, R))

by variations supported in B(xo, R) has to be smaller than

const. ~B xo, where is the volume element of aB (xo, R)

induced from the euclidean metric. Hence, in order to show that the
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assumption u (xo) = v (xo) leads to a contradiction we will have to prove
that D (max (u, v), B (xo, R)) and D (min (u, v), B (xo, R)) grow faster with

R ~ oo than v d03C3R.
aB (xp, R)

(b .1) LEMMA. - Suppose u, and there exists j~0 such that

and

Then we have

Proof - Assume to the contrary that

From this we are going to derive that not both u and v can be minimal.
Integration in polar coordinates shows that there exists a sequence 
diverging to 00 such that

Now we apply [3], Lemma (6 . 9), to v) and wi = u.
M oser’s estimates ( 2 . 6) and ( 2 . 7) show that the hypotheses f or this

lemma are satisfied. Hence there exists a constant Ã = Ã (F, a) and
functions such that 
and

Using our assumption and the fact that max (u, obtain
for every E > 0 an integer (e) such that
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for all i>i(E). Similarly we obtain such that

and

for all i > i (E).
On the other hand, since RJ=max(u, v)’ B (o, RJ our first

hypothesis implies that there exists ~ > 0 such that for sufficiently large i
there are 03C8i E (B (0, Ri)) such that

Similarly we obtain Ri)) such that

Now we note that quite generally

I ( max ( u, v), Q)+I(min(u, v), Q)=I(u, Q)+I(v, Q).
Since

Ri)=max(u, v) B(0, R ;),
v) B(0, Ri)

we obtain by adding ( 6 . 4) and (6. 5):

B (0~ Ri))  - 2 ~ Ri
Since (supp (~r;) U SUPP(i)) R~ the inequalities (6 . 2) and (6 . 3)
imply

for i >_ i (E). Adding these last inequalities we obtain

provided E > 0 is chosen smaller than § and 
Hence, not both u and v can be minimal which contradicts our hypo-

thesis.
Our first uniqueness result relies on an idea of M. Morse [11] which

was rediscovered by A ubry-Le Daeron [1] in their setting.

(6 . 6) THEOREM. - Suppose at) and t > 1. Then there does
not exist (a 1, ..., at _ 1 ) such that u -  v  u + .
Remark. - If .~V’ is an ordered set we say that two elements 

of .~V’ are neighboring elements in .X’ if there does not exist u3 

such that So (6.6) says that u - and u + are neighbors in
..f1 (a 1, ..., at _ 1).
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Proof. We assume that there exist, ~ ~ such .h.tcontradicts the ~we choose ~o e i , with * ~ > 0 and define

M)),°

Graph of w (fat line), case n = 1.

In particular we have w > u. The proof is based on the following two
estimates where j : = rk (FJ:

Proof of (6. 6) assuming (6 . ’7) and (6 . 8). - This is a variation of the
pro of of Lemm a (6.1). A s bef ore we apply [3], Lemma (6.9), to the
functions w >__ u and obtain a constant Ã = Ã (F, a) such that for all 1

there exist with R) = w ) B (0, R) and

According to (6.7) we can find R > max ~ R o, such that
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Hence for this we have

On the other hand

imply that there exists R)) such that

We add the preceding inequalities, use

and obtain

This contradicts the minimality of u.

Proof of (6 . ’7). - This is a variation of the proof of Lemma (4. 5). Set
for all 

Then rk (f) = rk (rt) + 1= n + 2 - j. The important property of F is that
for every k E hB~ o ~ we have either or 

and then there exists such that and 

say 
Since we have k~0393s and hence by (4 . 2) ( b).

Since u -  u _ w  u + this implies If 5= nEo and e. g. n>O then

Hence the set

has one-to-one projection into the cylinder

Hence there exists 1 > 0 such that

Since u, the set W is contained between two hyperplanes with
normal ( - a, 1). So there exists such that

Proof of (6 . 8). - Here we rely on Proposition (4. 7). Since u+ - v and
v - u - are positive and periodic with respect to there exists E > o such

that
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for all Recall from (4.7) that there exists C > 0 such
that and if x. bt>C.
Hence u (x) > v (x) if x~Vt and x. bt -C while u (x)  v (x) if xeVt and

x . bt>C. In particular, every line in Vt with direction bt intersects the set

Finally we will prove that there exist E > o, r > 0 such that

(6 . 9) D (w, B (x, 
f or every x~Vt with u (x) = v (x). This will complete our proof since the
preceding remark shows that the number of disjoint balls B (x, r) c B (0, R)
with x~Vt and u (x) = v (x), grows like since dim To

prove (6.9) we argue by contradiction and assume that there exist

sequences xi E - oo such that

u (xi) = v (xi) and lim D (w, B(xp = 0.

Note that u (Xi) = v (xi) implies

Choose such that are bounded for all i E N.
We may assume that lim yi = y and lim exist.
Since u (xi) = v (xi) we have so that is bounded.

According to (4.2) ( c) this implies that at), in particular
Tkou>u. Using Tki v = v we easily see that

w: = lim T~z w = max (min ( v, Tka u), max ( v, u)).
Now we use our assumption lim D (w, r~)) = 0 which - according

to [3], Lemma (6. 5) - implies D (w, R") =0, i. e. w is minimal.
On the other hand we have

Hence the maximum principle (2 . 2) implies u=w=Tko u which contradicts
u Tko u.

This completes the proof of (6. 9).
The following obvious consequence of (6. 6) will be useful in the induc-

tive proof that ~l (a 1, ..., ar) is totally ordered.

( 6 .10) COROLLARY. - Suppose ~ (ai, ... , is totally ordered. I f
u E ~ll (ai, ..., at) and v E ~ (at, ..., at) and if there exists xo E R"
with

The first step in the proof that ~ll ..., at) is totally ordered is to
show that J( (at) is totally ordered. As we mentioned earlier we have

if 03B1~Qn is the rotation vector corresponding to In this
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case is totally ordered according to [12], Theorem (5.2).
Moreover, for and generic F we will have which
is totally ordered by [3], Theorem (5.1). Here we treat the remaining case.

(6.11) LEMMA. - For all a 1 E S" with > 0 the totally
ordered.

Proof - We assume that u (xo) = v (xo) for some xo E R"
and that By the maximum principle (2 . 2) max(u, v) and
min (u, v) are not minimal. Hence there exist E > o, r > 0 such that

D (max (u, v), B (xo, r)) > E and D (min (u, v), B (xo, r)) >_- E.
Since

v)) = max (u, v), v)) = min (u, v)
for all we obtain with j = rk (I~’2):

and

So Lemma (6. 1) implies:

On the other hand we note that for every element the set

~ w ~ U is totally ordered since is contained in the closure of
the of w, cf. [3], Corollary (5.2). In particular we have

Then ui  u  u2 and for all with ~~ al > 0.
Since and ul we have ul  v  u2 as

well. From (4. 5) we obtain

where ~c2: R" - V2 is the orthogonal projection and E is a
measurable fundamental domain for the action of h2 on V2. Since

and we conclude that there exists C > 0 such that

where j = dim Y2 = rk (I~’2). This contradicts (6 . 12).

VoL 6, n° 2-1989.



122 V. BANGERT

Now we state the central theorem of this section:

(6.13) THEOREM. - For every admissible system (a~, ... , at) the set

.,6t (ai’ ..., at) is totally ordered.
We will prove (6.13) by induction on t the case t= 1 being treated in

(6.11). Our first step is a result which is an analogue of [3], Theorem (5.1).
Its claim is nontrivial only if rk We will use the results

(5.3)-(5.7) on ..., at).

(6.14) LEMMA. - Suppose ~ (al, ..., ar- I) is totally ordered and t > 1.
7hen at) is totally ordered.

Proof - We argue by contradiction and assume that there exist

ar) such that u (xo) = v (xo) for some We will
show that this contradicts the minimality of u or v. We may assume that
both u and v can be approximated from below: According to Lemma
(5. 3) there exist u;, at) such that u = lim ui, and
such that ui and vi can be approximated from below; now the maximum
principle (2 . 2) implies that for sufficiently large i E N we have and
there exists Xi E Rn with ui (xi) = v1 
We We will prove the following estimates

and

Since ( b .15) and ( b .1 ~ contradict Lemma (6.1) this will complete the
proof of (6 . 14).

Proof of (6 . 15) . - We only consider max ( u, v); min (u, v) can be treated
similarly. Since W: = Vt ~ bt> has dimension j-1 it suffices to prove
that there exist r > 0, E > 0 such that

(6.17) D (max (u, v), B (x, r)) >_ E

for all x E W. Assume to the contrary that there exist sequences 
r~ - 00 such that

lim D (max (u, v), B (x;, ri)) = 0.

Choose ki~0393t such that the sequence yi = xx + ki is bounded. We may
assume that lim u = u and lim v = v exist. Since

D (max (u, v), B (xi, r~)

Annales de l’Institut Henri Poincaré - Analyse non linéaire



123MINIMAL LAMINATIONS

and the Y remain bounded and lim we can use [3], Lemma (6 . 5),
to conclude that max (5, is minimal. Hence the

maximum principle (2. 2) implies u  v or u = v or u > v. On the other hand
the sequence fi. is bounded so that u, v E ..., a~
by Lemma (5.4). Since and since u can be approximated
from below we can apply Lemma (5 . 3) and obtain a sequence such

that and But now Corollary (5.7) implies that
Since u>v or u=v or uv we obtain u > v or u = v or u  v

and this contradicts our assumption on u and v.

Proof of (6. 16) . - Since our claim depends neither on the norm defining
B(0, R) nor on the normalization of dx we may assume that rt equals

We denote x = (y, z) E R" where From Corollary (6.10)
we know that u - = v - and u + = v +, hence 
The idea for the proof is as follows: Applying (4.5) to u - and u + we

reduce our claim to the case where we only integrate over those

(y, z) e B (0, R) with z ~  Ro for some Ro > 0 not depending on R. Hence

R - j 
(0, R) v dx is bounded above. In order to prove that the limit

for R --~ oo is zero we use the convergence of u and v to u - and u +

expressed in Proposition (4.7).
Lemm a (4.5) implies

where E = [0, 1)’. Hence, for every E > U there exists Ro>O such that

To see this we choose R o such that

and observe that (~ + - u -) (y, z) is Z’-periodic in y and that the ball
can be covered by (2 [R] + 2)~ copies of E. Hence it

remains to prove that
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f or every Ro>O. So let Ro>O, s > 0 be given and set

where mi denotes the volume of the i-dimensional

unit ball.

From Proposition (4.7) we know that we can find C > 0 such that for
all xeR" with we have 

So, if then

) u - v ~ Hence we can estimate the integral

by the sum of the integral of I u - v over the set

and the integral

Since u - v ~ is bounded the first integral can be estimated above by
where D > 0 depends on C, R o, ~ I btl. Hence we obtain’for all R > 0:

This proves (6.18) and thus completes the proofs of (6.16) and (6.14).
Our next step in the proof that .~l (at, ..., x) is totally ordered is to

show:

(6.19) LEMMA. If ..., at-t) is totally ordered and

rk (I-’t+ 1) = rk (I-’t) -1 then ~l (at, ..., a~) is totally ordered.

Proof - Contrary to our claim we assume that there exist

..., at) such that u (xo) = v (xo) for some xo e R". Since u-r
is 0393t+1-periodic we obtain

and

On the other hand Lemma ( 6.10) implies
u - = v -, u + = v +, hence’ u - v ~  u + - u - . According to Lemma (4. ~ we
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have

where 1t,: R" -~ Vt is the orthogonal projection and E a fundamental
domain for Vt/hr Recall that dim = rk 

Proposition (4.7) applies to u and v so that for every E > 0 there exists
C > 0 such that I (x)  E if > C. Hence the same arguments used
to prove (6.16) allow us to conclude

This contradicts Lemma (6.1) and completes the proof of (6.19).
The following lemma is the final step in the inductive proof of Theorem

(6.13):

(6.20) LEMMA. - If J( (a1, ..., is totally ordered and

rk (rt+ 1 )  rk (I-’t) -1 then ~ll (at, ..., at) is totally ordered.

Proof - Again we assume that there exist ..., at) such
that u (xo) = v (xo) for some So u - = v -, u + = v + by Lemma (6.10).
Lemma (6.14) says that (at, ..., at) is totally ordered. According to
Lemma (5.3) this implies that

are totally ordered. We set

Then and for all with ~~ 
Moreover u (xo) = v (xo) implies at)

is totally ordered.
Now we use Lemma (4.5) to conclude

wherej=rk On the other hand the 0393t+1-periodicity of u - v implies
lim inf (R-jD(max(u, v), B (o, R))) > 0
R - m
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and

Since these inequalities contradict Lemma (6.1).
This proves Lemma (6.20) and completes the proof of Theorem (6.13).
As a byproduct of the proof of Lemma (6.20) we obtain the following

f inal f orm of Lemma (5.4):

Then the  v  u+ ~ is the unique minimal set
of the action of rt on {v~  (al, ..., I u- vu+}.

This corollary is a generalization of [3], Corollary (5.2).
It says that a secondary lamination between neighboring elements

u -  u + in ..., is uniquely determined by at. 

(6.22) THEOREM. - Suppose (al, ..., at) is an admissible system. Then
~l (al, a2)U ... U .~ ..., at) is a totally ordered, closed,
T-invariant set of minimal solutions.

Proof - Closedness follows from Corollary (3.12) while T-invariance
is trivial. Iterated application of (4.2), (6.6) and (6.13) proves that
 (ai)U... ~  (a1, ..., ar) is totally ordered.
Finally we make a few remarks on the converse of (6.22):
Under what conditions do different minimal solutions

coincide at some point ?
According to Theorem (6.22) a necessary condition is that for some

smallest r) we have s = l, i. e. a 1 ~ a i, let r:J. t-: a’
denote the corresponding rotation vectors. In this case (2.6) implies that
the set S (u, separates two half spaces

where C2 > C1. If s > 1 the graphs of u and v may be disjoint:
If graph then graph for all

f E zn+ 1 with ~- a 1 ~ 0. In the case s > 1 a necessary and sufficient condition
is that where us _ 1, vs- I E .~l (al, - .. , are defined at the

end of Sect. 4 by applying the operation u -+ u- an appropriate number
of times.
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Without this condition it is not even generally true that u and some
translate coincide at some point: For non-generic integrands F it can

happen that

and that for all ..., we have either or

_ us -1. The proofs for these statements follow from Lemma (4.9)
and Theorem (6.6); they are left to the reader.

7. EXIS TENCE RESULTS

The uniqueness results of the preceding section are meaningful only if
there are objects to which they apply.
The purpose of this section is to discuss the existence of minimal

solutions in the sets ~ (ai, ..., We recall Moser’s basic existence
results: In our notation Corollary (5.5) in [12] states that if the
rotation vector a corresponding to a1 is rational. Theorem (5.6) in [12]
proves that 03B1~~ for all ex ERn. From Moser’s compactness theorem
(2.8) one can easily deduce that the T on has a minimal
set. According to [3], Lemma (4.6) such a minimal set is contained in

(a1)’ in particular ~Gl 0 also if a e R"BQ". So Moser’s results show
that ~ (a i ) ~ QS for all admissible ai, i. e. for all with a 1- en + 1 > o.

It should be underlined that we do not have to use any hard analysis
in order to obtain new minimal solutions. We simply use the compactness
property (2.8) together with the Zn+1-action and the uniqueness results
from Sect. 6. This is a well-known and useful technique for this type of
problem.
The following theorem is the main result of this section. We recall that

are neighboring elements in

and there does not exist u3 E ~ (al, ..., at) with ul  u3  u2.

(7.1) THEOREM. - Let (al, ..., at) be an admissible system with t > 2.

If u1u2 are neighboring elements in ..., ar _ 1) there exists
u E .~l (bi, ..., ai) such that ul  u _ u2 and, consequently, u - = ui, u + = u2.
We will say that ..., at) has gaps if there exists a pair of

neighboring elements in ~ll ..., at). So Theorem ( 7.1 ) shows that
(a 1, ..., at) ~ Q~ if ~ (ai, ..., has gaps.
Conversely if ..., at) then u -  u + are neighboring elements

in 
..., ar _ ; ) according to Theorem (6. 6), i. e. 

..., has
gaps.
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Historical remark: In the case n =1 Theorem (7.1) says:
If u 1  u~ are neighboring elements in

and if a2 = ( 1 + ~ a ~ 2) -’ ~2 ( 1, a) there exists a2) with M 
u + = u2. Since Proposition (4.7) implies lim (u - u 1 ) (x) = Q,

lim (u2 -- u) (x) = o.

If one looks at the situation on the torus T2 =R2jZ2 then x - (x, ui (x)),
x -~ (x, u2 (x)) parametrize homologous simple closed curves ~1 and fl2
( generically we will have ~ ~ _ ~ 2) and x -~ (x, u (x)~ is a curve without
selfintersections which is a-asymptotic to ~2, (o-asymptotic to rt 1 and
which does not intersect 1~2. If we replace a2 by - a2 we obtain

with v - = ui, v = u~ and hence

This case n =1 has been treated in [6], Theorem 3. 5.
In the (parametric) case of geodesics on surfaces such pairs of hetero-

clinic (resp. homoclinic if minimal geodesics connecting freely
homotopic minimal closed geodesics were first found by M. Morse [11].
Analogous results were obtained by Aubry-Le Daeron [1], Appendix 6,
for a model in solid_ state physics. See [2] for the relation between these
topics.

We argue by contradiction and assume that t is the
smallest integer >_ 2 such that there exist an admissible system ..., a~)
and neighboring elements u 1  u2 in ~ (a 1, ..., at-t) f or which our claim
does not hold.

For E > 0 we set

Since

the system (ai, ... , at _ 2, a (~)) is admissible. In the case t = 2 we have to
take ~ smaller than some Eo so that a (E) - en + 1 >0.
The crucial step is to prove that there exists 8 > 0 with the following

property:

(7.2) For all se(0, Eo) there exist ..., at _ 2, a (E)) and xE in a
bounded subset of R" such that
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Proof of (7.2) in the case t = 2. - Choose and

T==(A:, such that J~- a2 > o. We will find a translate 
where nE E Z and some Xt; ERn with I XE _ ~ k ~ such that (7.2) is satisfied
We choose S > o such that for all t E R.
This is possible since t --~ (u2 -u~) (tk) is positive and periodic.
We have ~- aE = E ( 1 ~- E2) -1 /2 ~, a2 > o and h- a1 = o.
Since the graphs of U1 and u2 lie within finite distance from a hyperplane

with normal ~1 and since lies within finite distance from a

hyperplane with normal we see that

Hence there exists such that

If we set and we obtain Now

Tku1 = ul and imply

Hence v~ : and xE have the properties required in (7.2).

Proof of (7.2) in the case t > 2. - This follows along the same lines.
Since are neighboring elements in ..., we have

uï = u2 and ui cf (4.2) (a). In particular, ul and u; are neighboring
elements in ..., at- Z).
By the choice of t there exists ..., at-2, aJ with (vJ - = ul

and (v~ + = u;. Choose
with and ~>0

such that for all t E R. Then we have J~- aE > 0 and,
consequently,

Hence there exists such that

and

By continuity we obtain t~ E R such that

As before we set Then and have
the properties required in (7.2).
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Finally we show that (7.2) implies our claim. Using (2.8) we see that
there is a sequence Ei > 0 with lim ~i=0 such that for and xi = x~i we
have limits lim lim Then (7.2) implies

So - according to Theorem ( 6. 6) - all we have to do is to show that
..., at) . If t > 2 we have

since

are neighboring elements in J{ (at, ... , at _ 2), cf (4. 2) (b) and (6. ~.
Moreover, if

then for small enough E > o.
Hence we have for almost all i E N and consequently 

According to Lemma (3.11) this 
If t = 2 we have a 1 (v) = lim a(E)=a1 since a 1 (u) depends on u conti-

nuously, cf Lemma (3.10). Next we show that t (v) >_ t Since

ul (xo)  v (xo)  u2 (xo) and ul, u2 are neighboring elements we cannot
have v E ~ (al, ... , ar-1), hence t (v) >__ t. If and then

for all E E tO, Eo). As above this implies Finally
Tk vi = vi for all and i~N implies Tk v = v for all hence

t (v) = t and ..., at). This completes the proof of Theorem (7.1).
The following corollary is not as obvious as it may sound.

(7.3) COROLLARY. - Suppose (ai’ ..., is admissible. The graphs of
functions in  (a 1 ) U ... ~  (a 1, ..., at) foliate R" + 1 if and only if
J{ ..., a=) does not have gaps.

Proof - Suppose first that ~l (ai, ..., at) does not have gaps. Since
~l {a I ) U ... U ~ (a 1, ..., at) is totally ordered we only have to show
that for every x o E R" the image Im (H) of the map

is all of R. Since 
..., ar) is closed so is 

If 1m (H) i= R we can find u (xo)  v (xo) in Im (H) such that

( u (xo), v = QS.
This implies
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If while then so that

Now I~’ + (u) = I~’ + (v) shows that u and v have the same invariants.

Hence there exists 1  s  t such that u and v are neighboring elements in
..., aJ. For s = t this contradicts our hypothesis while for st

Theorem (7.1) provides ..., as+ ~) with w (xo) E (u (xo), v (xo))
which contradicts the choice of u and v.
The converse is almost obvious: Note that for neighboring elements

..., at) we can have with only if t {v) > t.
With the help of (7.3) we can state Theorem (7.1) in the following final

form:

(7.4) COROLLARY. - Let (ai, ..., at) be admissible. Then

... , at) = QS if and only if there exists 1  s  t such that

(al)U ... (at, ..., as) gives rise to a foliation. Put differently we
have ~lf (al, ..., at) if and only if ~l (acl, ..., as) has gaps for all
1 st.
One can call an admissible system (al, ... , at) complete if

..., at ~1= ~ 0 ~. Using Corollary (4.8) it is easy to show the
following: If an admissible system (al, ... , at) is complete then

(a 1 ) U ... UJ{ ..., at) is a totally ordered T-invariant closed subset
of .~l which is maximal with these properties.

Finally we briefly discuss the interesting question which of the various
possibilities for foliations and laminations with gaps can actually occur.
The simplest case is that F only depends on p. Then

so that defines an affine foliation for all admissible a 1. This was
proved by Moser [12], Theorem (2.3), and it also follows easily from
(6.13), cf the proof of (7. 7) below.
According to J. Moser [12], Theorem (8. 1), such affine minimal folia-

tions are stable under small perturbations of the integrand F if the rotation
vector a satisfies certain Diophantine conditions. On the other hand, a

sufficiently large perturbation of the Dirichlet integrand F (x, 

can destroy all Zn+1-invariant minimal foliations with rotation vector a

satisfying a  A for some preassigned A. This was proved with some
labor in [4]. Using this result we will prove:

( 7 . 5) THEOREM. - a subgroup with

0393~Z.en+1={0}. For every b > 0 there exist integrands F satisfying ( F 1 )-
( F4) such that ..., at) has gaps if a1.en+1>03B4 and if
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I~’t + 1: _ ( Z" + 1 (~ ~ a ~, ..., ar ~’~) = I~’ while ..., ax) does not have
gaps does not contain r.

Remark. - In particular, if (ai, ..., at) is admissible we can choose

, .. , a~ _ , ? 1. Then we obtain integrands F such that

..., ar _ 1 ) has gaps while (a 1, ..., at) does not have gaps.
Hence (a 1 ) U ... (a 1, ..., at) gives rise to a f oliation which is

not conjugate to a foliation by affine functions. The integrands F we
construct are very special since they do not depend on x in some direction.

In particular, ~l (a1) U ... ~ ~ll (ai, ..., ar) defines a f oliation f or every
complete admissible system (a1, ..., at). However, if we just want to

retain the property that for some fixed (a~, ..., at) there are gaps in
Jt (ai’ ..., a~ _ 1 ) but not in J{ (ai’ ..., a~) we can arbitrarily perturb F
outside some set which is compact in R’~ + 1 ~Zn + 1 x R" and thereby destroy
most of these foliations.

Bef ore we start with the proof of ( 7 . 5) we present the type of integrands
F that we will use and we prove a lemma about minimal solutions of
such F. Let us first assume that x ~ 0 ~, say
span (F) == { 0 } x R"-~ x { 0 }. Then a corresponding F can be easily descri-
bed : We denote

We choose an integrand G: R’ x R x Rj --~ R according to [4] (satisfying
(Fi)-(F~) with j replacing n) and set

We can take G to be of the type q) _ (1 + ~ f (y)) ~ q’ 2 where
~ is a large constant and f : R~ + 1 -~ [0, 1 ] is 1-periodic with

f ( 1 /2, ..., 1 /2) =1 and f - 0 in a neighborhood of the boundary of the
cube [0, 1. 

_

(7.7) LEMMA. - suppose F and G are related by (7 . 6) and 
generates f 0 ~ x R" -’ x ~ 0 ~. If u E ~ll {F) and Tk u = u for all ~E I~’ then there
exists such that u(y, z)=u(y).
Proof - Suppose and (k, 0) E I~’. It follows easily from (7.6)

that us(x)=u(x-sk) is in for all seR.

Moreover u~ has the same invariants as u. Hence (6.13) implies that
for every s either or or ug  u.

If and say us>u, then > u which con-
q

tradicts Hence for all s E Q and by continuity this implies
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u (x) = u (x - sk) for all seR. Since the set of all with generates
~ 0 ~ x R~ -’ we obtain u (y, z) = u (y).

Finally we have to show that Obviously u does not have
selfintersections.. For the minimality of u we have to prove

for Extend cp to ~ E (R") by

where

A simple estimate shows that

where C > 0 does not depend on Rand is the volume of the (n - j)-
dimensional unit ball. If 11 0 then for sufficiently large R >0 this inequal-
ity contradicts the minimality of u. This proves that u is minimal.

Proof of ( 7 . 5) . - Suppose first that 
We define F by (7.6) where G is so chosen that there are no

Zj+1-invariant G-minimal foliations of Rl+ 1 with rotation vector a
satisfying ~ a ~ 2  S -1. Now Lemma (7.7) shows that

~ ~F (al, - .. , at) cannot define a foliation if

..., a 1- e" + 1 > S. Hence ..., ar) has gaps,
cf Corollary (7. 3). Conversely suppose that

Then there exists k = (k, As in ( 7 . ’~ we see that

and that s -+ Us is monotonic. Since we even have strict monotonic-

ity. Hence ..., ar) does not contain pairs of neighboring elements,
i. (ai, ..., at) does not have gaps.

Finally we have to remove the condition that

Now, if
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then this condition is satisfied after changing coordinates in R" by a
suitable element of SL (n, Z).

If {()} we can write

for a uniquely determined rational vector aespan(r), say l03B1~Zn for some
integer I > o. Now we choose an integrand F which solves our problem
for the subgroup r x ~ 0 ~ c:zn x ~ 0 ~.
We may assume that F has period 1-1 in u. Then

has the required properties for the group r.

8. OPEN PROBLEMS

We present two open problems which are closely related to our results.
The first question is in the spirit of Moser’s Theorem (8.1) from [12]
which extends KAM-Theory to the context considered here: a minimal
foliation

is stable (up to conjugation) under small perturbations of the integrand
Fo if its rotation vector a satisfies certain Diophantine inequalities. Now
Theorem (7.5) provides examples of integrands F with secondary
foliations: There exist admissible systems (al, ... , such that
~ll (ai, ..., has gaps which are filled by foliations in ~’ ..., at).
If rk (rr) >__ 2 then at can determine an irrational direction in span and
one can ask for an analogue to Moser’s theorem in this case:

Is there a stability result for secondary foliations?
To motivate our second problem we return to the Dirichlet integrand

Fo(x, P)=1 2|p|2 whose minimals are the harmonic functions. In the

1-dimensional case n =1 every harmonic function is affine. This generalizes
to arbitrary Z2-periodic integrands: In the case n =1 every minimal sol-
ution does not have selfintersections. For n > l, however, not every har-
monic function is affine. Accordingly, if one generalizes the Dirichlet

integrand F o to I-periodic integrands F the natural class of functions
corresponding to the affine functions is not characterized by F-minimality
alone, one has to impose an additional condition. The topological condi-
tion "no selfintersections" used by Moser [12] fulfills this purpose and it

is particularly natural in the context of foliations on a torus. Liouville’s
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Theorem on the growth of harmonic functions, however, would lead one
to different and more analytic conditions: One might assume that the
minimal solutions u satisfy for some a E R" or, even

weaker, sup |ux|  oo. According to (2.6) and (2. 7) every minimal solution
without selfintersections has these properties. So the question is if one can
deduce the property "no selfintersections" from these conditions (and
minimality).
We present two partial results in this direction. Here minimality is

always meant with respect to some integrand F satisfying (F 1)-(F 4).

(8 .1) THEOREM. - Suppose u is minimal and sup | ux I  ~. Then there
exists a sequence such that Tki u converges to a minimal solution
without self-intersections. 

’

Remark. - We will also prove: If u is an element of a minimal set of
the Z’~ + 1-action on the set of all minimal solutions then u does not have
selfintersections.

Proof - As a consequence of Theorem (6. 5) in Chapter 4 of Ladyzhen-
skaya/Ural’tseva’s book [8] we have: If Ui is a sequence of minimal
solutions such that sup and are bounded then ui contains a

subsequence which converges to a minimal solution in the C1-topology
on compact sets. This compactness property implies the existence of a
minimal set of the Z" + 1-action on the closure of the orbit

So it suffices to show that every element v of such a minimal set does
not have selfintersections. Assume to the contrary that v (xo) = (Tk v) (xo)
for some and that Since v belongs to a minimal
set we obtain:

If w is a limit of Z" + 1 _translates of v then w ~ Tk wand there exists

This implies:
There r > 0 such that for all xERn:

On the other hand we have

(8. 3) v and are uniformly Lipschitz; in particular sup 
The arguments used in the proof of Lemma (6.1) show that (8.2) and

( 8 . 3) contradict the minimality of v.
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If we assume the stronger hypothesis that is bounded for
some aeR" we obtain:

(8.4) THEOREM. - Suppose u is minimal, is bounded and

a, _ ( - a, 1) is rationally independent. Then u does not have selfintersections,
i. e. Me ~a.

Proof - A s in the proof of [12], Theorem ( 3 . 1), one can use

Theorem (5.2) in [8], Chapter 4 to conclude that u is uniformly Lipschitz.
Assume that there exists and xo e R" such that 
while Since a is rationally independent we may assume that
~- oc > o.
The maximum principle ( 2 . 2) implies that the set

is not empty. We will prove the following
two statements:

(8.5) There exist E > o, r > 0 such that for all xeW:

D (max (u, T,~ u), B (x, r)) >_ e and D (min (u, Tk u), B (x, r)) >_ E.

(8.6) Let N(R) denote the maximal number of points in WHB(0, R)
with pairwise distance >_ 2 r. For every C > 0 there exists R >_ C such that

Note that

Using the unif orm Lipschitz continuity of u and we can argue as
in Lemma (6.1) and show that (8. 5) and (8. 6) contradict the minimality
of u.

Proof of (8. 5). - Assume to the contrary that there exists a sequence
xt E W such that

Choose such that 1]" and such that (Tki u) (0) is
bounded. A s a consequence of Theorem (6. 5) in [8], Chapter 4 a sub-
sequence of Ti; u converges to a minimal solution v. As in the proof of
(6. 15) we conclude from
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is minimal.
For every limit point y of the sequence we have

(T~ v) (y)  v (y). Hence the maximum principle implies Tk v  v. On the
other hand v is a limit of translates of u so is bounded.

Since k.03B1>0 this implies that for sufficiently large m E N. This
contradicts and concludes the proof of (8. 5).

Proof of ( 8 . 6). - First of all we have the trivial estimate

(8.7) N (R) _>_ (vol, (B (0, 4 r))) -1 ~ voi (W U B (0, R))
where voi denotes n-dimensional Lebesgue measure. On the other hand
integration in polar coordinates gives:

where Op is the measure on the sphere aB (0, p) induced from the euclidean
structure of Rn. Since B (0, R)) does not grow exponentially in
R the quotient

cannot remain bounded for R -+ 00. Since is bounded the

inequalities ( 8 . 7) and ( 8 . 8) imply ( 8 . 6) .
In view of Theorem (8.4) one might be inclined to believe that it is

only a small step to prove that u minimal and imply
u~ 03B1 for an arbitrary aeR". However, as we saw in the preceding
sections the case "a rationally dependent" may be much more complicated
than the case "a rationally independent".
So we ask:
Do there exist minimal solutions u with selfintersections such that

is bounded for some a e R"?
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