Interior curvature estimates for hypersurfaces of prescribed mean curvature
Annales de l'I.H.P. Analyse non linéaire, Volume 6 (1989) no. 4, p. 251-260
@article{AIHPC_1989__6_4_251_0,
     author = {Ecker, Klaus and Huisken, Gerhard},
     title = {Interior curvature estimates for hypersurfaces of prescribed mean curvature},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {6},
     number = {4},
     year = {1989},
     pages = {251-260},
     zbl = {0683.53007},
     mrnumber = {998603},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1989__6_4_251_0}
}
Ecker, Klaus; Huisken, Gerhard. Interior curvature estimates for hypersurfaces of prescribed mean curvature. Annales de l'I.H.P. Analyse non linéaire, Volume 6 (1989) no. 4, pp. 251-260. http://www.numdam.org/item/AIHPC_1989__6_4_251_0/

[1] E. Bombieri, E. De Giorgi and M. Miranda, Una maggiorazione apriori relative alle ipersuperfici minimali non parametriche, Arch. Rat. Mech. Anal., Vol. 32, 1969, pp. 255-269. | Zbl 0184.32803

[2] L. Caffarelli, L. Nirenberg and J. Spruck, On a Form of Bernstein's Theorem, preprint (to appear). | MR 864651

[3] P. Concus and R. Finn, On Capillary Free Surfaces in a Gravitational Field, Acta Math., Vol. 132, 1974, pp. 207-223. | MR 670443 | Zbl 0382.76005

[4] K. Ecker, An Interior Gradient Bound for Solutions of Equations of Capillary Type, Arch. Rat. Mech. Anal., Vol. 92, 1986, pp. 137-151. | MR 816617

[5] K. Ecker and G. Huisken, A Bernstein Result for Minimal Graphs of Controlled Growth, J. Diff. Geom. (to appear). | MR 1037408 | Zbl 0696.53002

[6] R. Finn, On Equations of Minimal Surface Type, Ann. of Math. (2), Vol. 60, 1954, pp. 397-415. | MR 66533 | Zbl 0058.32501

[7] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (2nd edition), Springer-Verlag, Berlin-Heidelberg, New York, 1983. | MR 737190 | Zbl 0562.35001

[8] E. Heinz, Über die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl, Vol. II, 1952, pp. 51-56. | MR 54182 | Zbl 0048.15401

[9] E. Heinz, Interior Gradient Estimates for Surfaces z = F (x, y) with Prescribed Mean Curvature, J. Diff. Geom., Vol. 5, 1971, pp. 149-157. | MR 289940 | Zbl 0212.44001

[10] N. Korevaar, An Easy Proof of the Interior Gradient Bound for Solutions to the Prescribed Mean Curvature Equation, Proc. Symp. Pure Math., Vol. 45, 1986, Part 2. | MR 843597 | Zbl 0599.35046

[11] O.A. Ladyzhenskaya and N.N. Ural'Tseva, Local Estimates for Gradients of Solutions of Nonuniformly Elliptic and Parabolic Equations, Comm. Pure Appl. Math., Vol. 23, 1970, pp. 677-703. | MR 265745 | Zbl 0193.07202

[12] J. Michael and L. Simon, Sobolev and Mean Value Inequalities on Generalized Submanifolds of R", Comm. Pure Appl. Math., Vol. 26, 1973, pp. 361-379. | MR 344978 | Zbl 0256.53006

[13] J. Moser, A New Proof of De Giorgi's Theorem Concerning the Regularity Problem for Elliptic Differential Equations, Comm. Pure Appl. Math., Vol. 13, 1960, pp. 457- 468. | MR 170091 | Zbl 0111.09301

[14] R. Schoen, L. Simon and S.T. Yau, Curvature Estimates for Minimal Hypersurfaces, Acta Math., Vol. 134, 1975, pp. 275-288. | MR 423263 | Zbl 0323.53039

[15] L. Simon and J. Spruck, Existence and Regularity of a Capillary Surface with Prescribed Contact Angle, Arch. Rat. Mech. Anal., Vol. 61, 1976, pp. 19-34. | MR 487724 | Zbl 0361.35014

[16] N.S. Trudinger, A New Proof of the Interior Gradient Bound for the Minimal Surface Equation in n-Dimensions, Proc. Nat. Acad. Sci. U.S.A., Vol. B69B, 1972. pp. 821-823. | MR 296832 | Zbl 0231.53007

[17] N.S. Trudinger, Gradient Estimates and Mean Curvature, Math. Z., Vol. 131, 1973. pp. 165-175. | MR 324187 | Zbl 0253.53003

[18] J.C.C. Nitsche, Lectures on Minimal Surfaces, Vol. I (to appear). | MR 305255