Annales de l'I. H. P., section C

Klaus Ecker
 Area-minimizing integral currents with movable boundary parts of prescribed mass

Annales de l'I. H. P., section C, tome 6, no 4 (1989), p. 261-293
http://www.numdam.org/item?id=AIHPC_1989__6_4_261_0

© Gauthier-Villars, 1989, tous droits réservés.
L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Area-minimizing integral currents with movable boundary parts of prescribed mass

by
Klaus ECKER
Department of Mathematics,
University of Melbourne, Parkville Vic. 3052, Australia

Abstract. - We generalize the thread problem for minimal surfaces to higher dimensions using the framework of integral currents.

Key words : Integral currents, minimizing area, minimal surface, free boundary, mass.
Résumé. - On généralise le «problème fil» pour surfaces minimales aux dimensions plus hautes en utilisant le cadre de courants intégrals.

0. INTRODUCTION

The classical thread problem for minimal surfaces in \mathbb{R}^{3} can be formulated as follows: For a given rectifiable Jordan arc Γ and a movable arc Σ of fixed length attached to the endpoints of Γ one wants to find a surface \mathscr{M} of least area among all surfaces spanning this configuration.

[^0]For a detailed description of the problem and a list of relevant literature on related soap-film experiments we refer the reader to the recent paper by Dierkes, Hildebrandt and Lewy [DHL].

One can easily construct examples where the thread Σ "crosses" the wire Γ (for planar " S "-shaped Γ) or "sticks" to it in a subarc of positive length (if for instance Γ has the shape of a long " U "). In other words, the solution surface \mathscr{M} may consist of several disconnected components and there may be parts of Σ and Γ which do not belong to $\partial \mathscr{M}$. In fact this represents the main difficulty for the existence proof, at least in the parametric approach of [AHW], [N1]-[N3] and [DHL].

Nitsche ([N1]-[N3]) proved that the nonselfintersecting components of $\Sigma \sim \Gamma$ are actually smooth arcs of constant curvature. Dierkes, Hildebrandt and Lewy [DHL] established the real analyticity of these arcs.

Alt [AHW] was able to prove that the parts of Σ which attach to regular parts of Γ in subarcs of positive length have to do this tangentially. Moreover he could show, if a solution surface consists of several disconnected components, all regular parts of $\Sigma \sim \Gamma$ necessarily have the same curvature.

The present work is concerned with a more general approach to the thread problem which, due to its generality in handling the existence problem, does not enable one to determine a priori the topological type of the solution surfaces as was done by Alt [AHW] in his existence proof.

For a start we would like to allow Γ to be disconnected. Γ may for instance consist of several oriented arcs or even closed curves. A suitable generalization of the classical problem would then be to seek a surface \mathscr{M} of minimal area among all oriented surfaces \mathscr{S} such that $\partial \mathscr{S}-\Gamma$ is prescribed, where in subtracting Γ form $\partial \mathscr{S}$ we take orientations into account. If Γ consists of several wire arcs we do not prescribe the way in which our threads have to be connected to the endpoints of Γ. Also, rather than prescribing the length of each single piece of thread, we only keep the total length of $\Sigma=\partial \mathscr{M}-\Gamma$ fixed. As there is no obvious way of excluding the possibility of Σ having higher multiplicity we may as well allow Γ to have arbitrary integer multiplicity.

In section 1 we give a precise formulation of the problem for arbitrary dimension and codimension using the framework of integral currents. We then solve the existence problem (Theorem 1.4).

Section 2 is concerned with properties of the thread related to the above mentioned results ([AHW], [DHL], [N1]-[N3]). We generalize the Lagrange multiplier techniques used in [DHL] to obtain control of the first variation of Σ (Theorem 2.3 and Corollary 2.5). In fact we show that Σ has bounded generalized mean curvature away from its boundary $\partial \Sigma$. This implies in particular that Σ only coincides with parts of Γ which have bounded generalized mean curvature. Moreover this establishes a weak tangential property of Σ at points on Γ.

Proposition 2.7 states that all free regular parts of Σ are of class \mathbf{C}^{∞} and have the same constant mean curvature and that, in constrast to the higher multiplicity Plateau problem (cf. [WB]), a thread with higher integer multiplicity cannot locally bound several distinct sheets of minimal surfaces unless the thread itself has zero mean curvature. By "free parts" of Σ we not only mean $\Sigma \sim \Gamma$ but also those sections of Σ supported in Γ where the multiplicity of $\partial \mathscr{M}$ is not smaller than the multiplicity of Γ. A simple example where a "free" Σ is supported in Γ is obtained by letting \mathscr{M} be an oriented annulus with multiplicity two, and Σ be the inner circle counted with multiplicity one.
If however locally near a point of Σ

$$
\partial \mathscr{M}=c \Gamma
$$

for some $c \in[0,1)$, the mean curvature of Σ need no longer be constant. Nevertheless it cannot exceed the mean curvature of the free parts of Σ.

As Theorem 2.3 holds without any major conditions imposed on Γ one can show that also the decomposable components of any local decomposition of Σ have bounded generalized mean curvature. This leads to some partial regularity results for the two dimensional thread problem: Theorem 3.1 states that one dimensional stationary threads consist of straightline segments which do not intersect, thus suggesting a natural condition for the existence of a Lagrange multiplier as in Theorem 2.3.
In Theorem 3.3 we show that the thread Σ consists of $C^{1,1}$-arcs which do not cross each other. If several pieces of thread have a point in common they must have the same tangent at this point. It is tempting to conjecture that one dimensional threads are completely regular.

Finally we derive a monotonicity formula for the two dimensional problem, from which the existence of area-minimizing tangent cones immediately follows.

We would like to thank Prof. S. Hildebrandt for directing our attention to this problem.

1. THE VARIATIONAL PROBLEM

For detailed information on geometric measure theory the reader is referred to [FH] and [SL]. We shall follow the notation used in [SL].

Let U be an open subset of \mathbb{R}^{n+k}. We denote the class of n-dimensional integral currents in U by

$$
\mathrm{I}_{n, \text { loc }}(\mathrm{U})=\left\{\mathrm{S} \in \mathscr{D}_{n}(\mathrm{U}) / \mathrm{S}, \partial \mathrm{~S} \text { integer multiplicity }\right\}
$$

and

$$
\mathbf{I}_{n}(\mathrm{U})=\left\{\mathbf{S} \in \mathbf{I}_{n, \text { loc }}(\mathbf{U}) / \mathbf{M}(\mathbf{S})+\mathbf{M}(\partial \mathbf{S})<\infty\right\}
$$

1.1. Definition

$\mathrm{T} \in \mathrm{I}_{n, \text { loc }}(\mathrm{U})$ is called a minimizer of the thread problem with respect to $\Gamma \in \mathrm{I}_{n-1, \text { loc }}$ (U) if

$$
\mathbf{M}_{\mathbf{w}}(\mathrm{T}) \leqq \mathbf{M}_{\mathbf{w}}(\mathbf{S})
$$

whenever $\mathrm{W} \subset \mathrm{U}$ is open and $\mathrm{S} \in \mathrm{I}_{n, \text { loc }}(\mathrm{U})$ satisfies

$$
\operatorname{spt}(S-T) \subset \mathbf{W}
$$

as well as

$$
\mathbf{M}_{\mathbf{w}}(\partial \mathbf{S}-\Gamma)=\mathbf{M}_{\mathbf{w}}(\partial \mathrm{T}-\Gamma) .
$$

1.2. Remark

(1) We shall sometimes refer to $\Sigma=\partial \mathrm{T}-\Gamma$ as the free or thread-boundary part and to Γ as the fixed or wire-boundary part of T although neither $\operatorname{spt} \Sigma$ nor $\operatorname{spt} \Gamma$ has to be totally contained in spt $\partial \mathrm{T}$; in fact we may have

$$
\mu_{\Sigma}(\operatorname{spt} \Gamma \sim \operatorname{spt} \partial T)>0
$$

(2) A minimizer T of the thread problem obviously minimizes mass also in the usual sense, that is among all comparison surfaces which agree with T along its boundary $\partial \mathrm{T}$.

1.3. Proposition

A minimizer in the sense of 1.1 still satisfies

$$
\mathbf{M}_{\mathbf{w}}(\mathrm{T}) \leqq \mathbf{M}_{\mathbf{w}}(\mathbf{S})
$$

even if we only assume that the inequality

$$
\mathbf{M}_{\mathbf{w}}(\partial \mathbf{S}-\Gamma) \leqq \mathbf{M}_{\mathbf{w}}(\partial \mathrm{T}-\Gamma)
$$

holds for surfaces $\mathrm{S} \in \mathrm{I}_{n, \text { loc }}(\mathrm{U})$ satisfying $\operatorname{spt}(\mathrm{S}-\mathrm{T}) \subset \mathrm{W}$.
Proof. - Suppose there exists an $\mathrm{R} \in \mathrm{I}_{n \text {, loc }}(\mathrm{U})$ which satisfies $\operatorname{spt}(\mathrm{R}-\mathrm{T}) \subset \mathbf{W}$,

$$
\mathbf{M}_{\mathbf{w}}(\partial \mathbf{R}-\Gamma)<\mathbf{M}_{\mathbf{w}}(\partial \mathrm{T}-\Gamma)
$$

and

$$
\mathbf{M}_{\mathbf{w}}(\mathbf{R})<\mathbf{M}_{\mathbf{w}}(\mathrm{T}) .
$$

Obviously we can always find an integral current $Q \in I_{n}(W)$ such that spt $\mathrm{Q} \cap(\mathrm{spt} \mathrm{R} \cup \operatorname{spt} \Gamma)=\varnothing, \operatorname{spt} \mathrm{Q} \subset \mathbf{W}$,

$$
\mathbf{M}_{\mathbf{w}}(\mathrm{Q})<\mathbf{M}_{\mathbf{w}}(\mathbf{T})-\mathbf{M}_{\mathbf{w}}(\mathrm{R})
$$

and

$$
\mathbf{M}_{\mathbf{w}}(\partial \mathbf{Q})=\mathbf{M}_{\mathbf{w}}(\partial \mathrm{T}-\Gamma)-\mathbf{M}_{\mathbf{w}}(\partial \mathbf{R}-\Gamma) .
$$

$R+Q$ then furnishes an admissible comparison surface in the sense of 1.1 with the property

$$
\mathbf{M}_{\mathbf{w}}(\mathrm{R}+\mathrm{Q})<\mathbf{M}_{\mathbf{w}}(\mathrm{T})
$$

thus contradicting the minimality of T.
We are now going to establish the existence of a nontrivial minimizer.
Let $\Gamma \in I_{n-1}\left(\mathbb{R}^{n+k}\right)$ have compact support. Define

$$
d_{\Gamma}=\inf \left\{\mathbf{M}(\mathrm{Q}) / \mathrm{Q} \in \mathrm{I}_{n-1}\left(\mathbb{R}^{n+k}\right) \text { s. t. } \partial \mathrm{Q}=\partial \Gamma\right\}
$$

and suppose $\mathbf{M}(\Gamma)>d_{\Gamma}$.

1.4. Theorem

Let $d_{\Gamma} \leqq \mathrm{L}<\mathbf{M}(\Gamma)$. Then there exists a nontrivial compactly supported surface $T \in I_{n}\left(\mathbb{R}^{n+k}\right)$ which minimizes mass among all surfaces $S \in I_{n}\left(\mathbb{R}^{n+k}\right)$ with the property $\mathbf{M}(\partial \mathbf{S}-\Gamma)=\mathrm{L}$.

1.5. Remark

Every minimizer of 1.4 also minimizes mass in the sense of Definition 1.1.

Proof of 1.4. We set

$$
\mathrm{A}(\Gamma, \mathrm{~L})=\left\{\mathrm{S} \in \mathrm{I}_{n}\left(\mathbb{R}^{n+k}\right) / \mathbf{M}(\partial \mathrm{S}-\Gamma) \leqq \mathrm{L}\right\} .
$$

Obviously $L<\mathbf{M}(\Gamma)$ implies $0 \notin A(\Gamma, L)$. Since $\mathbf{M}(\Gamma)>d_{\Gamma}$ there exists a compactly supported $Q \in I_{n-1}\left(\mathbb{R}^{n+k}\right)$ which is different from Γ and satisfies $\partial \mathrm{Q}=\partial \Gamma$ as well as $\mathbf{M}(\mathrm{Q})=d_{\Gamma}$. (Use [SL], 34.1 for instance.) The integral cone $\mathrm{R}=0$ \# $(\Gamma-\mathrm{Q})$ then satisfies $\mathbf{M}(\partial \mathbf{R}-\Gamma)=\mathbf{M}(\mathrm{Q})=d_{\Gamma}$. From $d_{\Gamma} \leqq \mathrm{L}$ we conclude that $\mathbf{A}(\Gamma, \mathrm{L})$ is nonempty.

We now proceed in a similar way as in [SL, 34.1]. Let $\left(T_{j}\right) \subset A(\Gamma, L)$, $j \geqq 1$, be a minimizing sequence, that is

$$
\lim _{j \rightarrow \infty} \mathbf{M}\left(\mathbf{T}_{j}\right)=\inf \{\mathbf{M}(\mathbf{S}) / \mathbf{S} \in \mathbf{A}(\Gamma, \mathrm{L})\} .
$$

Since Γ has compact support we may assume that $\operatorname{spt} \Gamma \subset B_{R}(0)$ for some $R>0$, where $B_{R}(0)$ denotes an open ball in \mathbb{R}^{n+k}. Let $f: \mathbb{R}^{n+k} \rightarrow \overline{\mathbf{B}_{\mathbf{R}}(0)}$ be the nearest point retraction form \mathbb{R}^{n+k} onto $\overline{\mathbf{B}_{\mathbf{R}}(0)}$. It follows from the fact that $\operatorname{Lip} f=1$ and $f=\mathrm{id}$ in $\overline{\mathbf{B}_{\mathrm{R}}(0)}$ that

$$
\begin{gathered}
\mathbf{M}\left(f_{\sharp} \mathbf{T}_{j}\right) \leqq \mathbf{M}\left(\mathrm{T}_{j}\right) \\
\mathbf{M}\left(\partial f_{\sharp} \mathrm{T}_{j}-\Gamma\right)=\mathbf{M}\left(f_{\sharp}\left(\partial \mathrm{T}_{j}-\Gamma\right)\right) \leqq \mathbf{M}\left(\partial \mathrm{T}_{j}-\Gamma\right) \leqq \mathrm{L}
\end{gathered}
$$

Vol. 6, $n=4-1989$.
and

$$
\operatorname{spt} f_{₹} \mathbf{T}_{j} \subset \overline{\mathbf{B}_{\mathbf{R}}(\mathbf{0})} .
$$

Hence we may assume without loss of generality that

$$
\operatorname{spt~T}_{j} \subset \overline{\mathbf{B}_{\mathbf{R}}(0)}, \quad j \geqq 1 .
$$

The assumption $\mathbf{M}(\Gamma)<\infty$ combined with $\mathbf{M}\left(\partial \mathrm{T}_{j}-\Gamma\right) \leqq \mathrm{L}(j \geqq 1)$ yields

$$
\sup _{j \geqq 1}\left(\mathbf{M}\left(\mathrm{~T}_{j}\right)+\mathbf{M}\left(\partial \mathrm{T}_{j}\right)\right)<\infty
$$

By the compactness theorem for integral currents ([SL, 27.3]) we can select a subsequence [again denoted by $\left(\mathrm{T}_{j}\right)$] which converges in $\mathscr{D}_{n}\left(\mathbb{R}^{n+}\right)$ to an integral current $T \in \mathbf{I}_{n}\left(\mathbb{R}^{n+k}\right)$ which satisfies

$$
\operatorname{spt} T \subset \overline{\mathbf{B}_{R}(0)} .
$$

The lower-semicontinuity of the mass implies

$$
\mathbf{M}(\mathrm{T}) \leqq \lim _{j \rightarrow \infty} \mathbf{M}\left(\mathrm{~T}_{j}\right)
$$

and

$$
\mathbf{M}(\partial \mathbf{T}-\Gamma) \leqq \lim _{j \rightarrow \infty} \mathbf{M}\left(\partial \mathbf{T}_{j}-\Gamma\right) \leqq \mathrm{L}
$$

so that in fact

$$
\mathbf{M}(\mathrm{T})=\inf \{\mathbf{M}(\mathbf{S}) / \mathbf{S} \in \mathbf{A}(\Gamma, \mathrm{L})\} .
$$

It remains to show that $\mathbf{M}(\partial \mathbf{T}-\Gamma)=\mathbf{L}$. In order to establish this (cf. [AHW; 3.4]) we first recall that for every $x_{0} \in \operatorname{spt} \mathrm{~T} \sim \operatorname{spt} \partial \mathrm{~T}$ we have

$$
\mathbf{M}\left(\mathbf{T}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right) \leqq c \rho^{n}, \quad \forall \rho<\operatorname{dist}\left(x_{0}, \operatorname{spt} \partial \mathbf{T}\right)\right.
$$

where the constant depends on $\mathbf{M}(\mathrm{T})$ and x_{0}. (This is an immediate consequence of the interior monotonicity formula for mass-minimizing currents.) We can therefore conclude that for every $\varepsilon>0$ there exists a number $\tau>0$ such that

$$
\mathbf{M}\left(\partial\left(\mathbf{T}\left\llcorner\mathbf{B}_{\tau}\left(x_{0}\right)\right)\right) \leqq \varepsilon .\right.
$$

[The slice $\partial\left(T\left\llcorner\mathbf{B}_{\tau}\left(x_{0}\right)\right)\right.$ is well-defined for \mathscr{L}^{1}-a. e. $\tau>0$.] Indeed if this was false the coarea-formula would immediately yield that for some $\varepsilon>0$

$$
\varepsilon \rho<\int_{0}^{\rho} \mathbf{M}\left(\partial \left(\mathbf{T}\left\llcorner\mathbf{B}_{\tau}\left(x_{0}\right)\right) d \tau \leqq \mathbf{M}\left(\mathbf{T}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right) \leqq c \rho^{n}\right.\right.\right.
$$

holds for every $\rho<\operatorname{dist}\left(x_{0}, \operatorname{spt} \partial \mathrm{~T}\right)$.
Suppose now that $\mathbf{M}(\partial \mathrm{T}-\Gamma)<\mathrm{L}$. As above we can find a ball $\mathrm{B}_{\mathrm{r}}\left(x_{0}\right)$ about some $x_{0} \in \operatorname{spt} \mathrm{~T} \sim \operatorname{spt} \partial \mathrm{~T}$ such that

$$
\mathbf{M}\left(\partial\left(\mathbf{T}\left\llcorner\mathbf{B}_{\boldsymbol{\tau}}\left(x_{0}\right)\right)\right) \leqq \mathbf{L}-\mathbf{M}(\partial \mathbf{T}-\Gamma) .\right.
$$

The surface $\mathrm{T}^{\prime}=\mathbf{T}-\left(\mathbf{T}\left\llcorner\mathbf{B}_{\tau}\left(x_{0}\right)\right)\right.$ then satisfies

$$
\mathbf{M}\left(\mathrm{T}^{\prime}\right)<\mathbf{M}(\mathrm{T})
$$

and

$$
\mathbf{M}\left(\partial \mathrm{T}^{\prime}-\Gamma\right) \leqq \mathbf{L}
$$

thus contradicting the minimality of T in $A(\Gamma, L)$.

1.6. Proposition

Let $\mathrm{T} \in \mathrm{I}_{n}\left(\mathbb{R}^{n+k}\right)$ be minimizing with respect to $\Gamma \in \mathrm{I}_{n-1}\left(\mathbb{R}^{n+k}\right)$ in the sense of Theorem 1.4. Then

$$
\operatorname{spt} T \subset \operatorname{conv}(\operatorname{spt} \Gamma)
$$

Proof. - We modify a well-known argument used in the case of the ordinary problem of mass-minimizing.

Since the convex hull of spt Γ is the intersection of all balls in \mathbb{R}^{n+k} which contain spt Γ it suffices to show that spt $\Gamma \subset \overline{\mathbf{B}_{\mathbf{R}}\left(x_{0}\right)}$ implies $\operatorname{spt} \mathrm{T} \subset \overline{\mathrm{B}_{\mathrm{R}}\left(x_{0}\right)}$. By translating and scaling we may assume without loss of generality that $x_{0}=0$ and $\mathbf{R}=1$. Let $f: \mathbb{R}^{n+k} \rightarrow \overline{\mathbf{B}_{1}(0)}$ be defined by $f(x)=x$ for $|x|<1, f(x)=|x|^{-1} x$ for $|x| \geqq 1$. Since Lip $f \leqq 1$ and $f_{\sharp} \Gamma=\Gamma$ we infer as in the proof of Theorem 1.4

$$
\begin{aligned}
\mathbf{M}\left(f_{\sharp} \mathrm{T}\right) & \leqq \mathbf{M}(\mathrm{T}) \\
\mathbf{M}\left(\partial f_{\sharp} \mathrm{T}-\Gamma\right) & \leqq \mathbf{M}(\partial \mathrm{T}-\Gamma)
\end{aligned}
$$

which in view of the minimality of T implies

$$
\mathbf{M}(\mathbf{T})=\mathbf{M}\left(f_{\sharp} \mathbf{T}\right) .
$$

Using this, the fact that $f_{\#} \mathbf{T}\left\llcorner\mathrm{~B}_{1}(0)=\mathbf{T}\left\llcorner\mathbf{B}_{1}(0)\right.\right.$ and the area-formula

$$
\mathbf{M}\left(f_{\sharp} \mathbf{T}\right)=\mathbf{M}\left(f_{\sharp} \mathbf{T}\left\llcorner\mathbf{B}_{1}(0)\right)+\int_{\mathbb{R}^{n+k_{\sim}} \mathbf{B}_{1}(0)}\left|\overrightarrow{\mathbf{T}}(x) \wedge \frac{x}{|x|}\right||x|^{-n} d \mu_{\mathbf{T}}(x)\right.
$$

we obtain

$$
\int_{\mathbb{R}^{n+k_{\sim}} \sim \mathrm{B}_{1}(0)}\left(\left|\overrightarrow{\mathrm{T}}(x) \wedge \frac{x}{|x|}\right||x|^{-n}-1\right) d \mu_{\mathrm{T}}(x)=0 .
$$

Since $|\overrightarrow{\mathrm{T}}(x)|=1$ for μ_{T}-a. e. $x \in \mathbb{R}^{n+k}$ we conclude

$$
\mu_{\mathrm{T}}\left(\mathbb{R}^{n+k} \sim \overline{\left.\mathrm{~B}_{1}(0)\right)}=0 .\right.
$$

The following decomposition property of T and restriction property of Σ is going to play a central role in section 2.

1.7. Proposition

Let $\mathrm{T} \in \mathrm{I}_{\boldsymbol{n}}(\mathrm{U})$ be a minimizer of the thread problem with respect to $\Gamma \in \mathrm{I}_{n-1}(\mathrm{U})$.
(1) Suppose the free boundary part $\Sigma=\partial \mathrm{T}-\Gamma$ is decomposed inside $\mathrm{W}_{0} \subset \mathrm{U}$ in the following way:

$$
\begin{gathered}
\Sigma=\Sigma^{\prime}+\Sigma^{\prime \prime} \\
\mathbf{M}_{\mathbf{w}_{0}}(\Sigma)=\mathbf{M}_{\mathbf{w}_{0}}\left(\Sigma^{\prime}\right)+\mathbf{M}_{\mathbf{w}_{0}}\left(\Sigma^{\prime \prime}\right)
\end{gathered}
$$

Then

$$
\mathbf{M}_{\mathbf{w}_{0}}(\mathrm{~T}) \leqq \mathbf{M}_{\mathbf{w}_{0}}(\mathbf{S})
$$

for every $\mathrm{S} \in \mathrm{I}_{n, \text { loc }}(\mathrm{U})$ satisfying $\operatorname{spt}(\mathrm{S}-\mathrm{T}) \subset \mathrm{W}_{0}$ and

$$
\mathbf{M}_{\mathbf{w}_{0}}\left(\partial S-\Gamma^{\prime}\right)=\mathbf{M}_{\mathbf{w}_{0}}\left(\Sigma^{\prime}\right)
$$

where $\Gamma^{\prime}=\partial \mathrm{T}-\Sigma^{\prime}$ is the new fixed boundary part.
(2) Suppose T can be decomposed inside $\mathrm{W}_{0} \subset \mathrm{U}$ in the following way:

$$
\begin{array}{ll}
\mathrm{T}=\mathrm{T}^{\prime}+\mathrm{T}^{\prime \prime}, & \mathbf{M}_{\mathrm{w}_{0}}(\mathrm{~T})=\mathbf{M}_{\mathbf{w}_{0}}\left(\mathrm{~T}^{\prime}\right)+\mathbf{M}_{\mathbf{w}_{0}}\left(\mathrm{~T}^{\prime \prime}\right) \\
\Gamma=\Gamma^{\prime}+\Gamma^{\prime \prime}, & \Sigma^{\prime}=\partial \mathrm{T}^{\prime}-\Gamma^{\prime}, \Sigma^{\prime \prime}=\partial \mathrm{T}^{\prime \prime}-\Gamma^{\prime \prime} \\
\Sigma=\Sigma^{\prime}+\Sigma^{\prime \prime}, & \mathbf{M}_{\mathbf{w}_{0}}(\Sigma)=\mathbf{M}_{\mathbf{w}_{0}}\left(\Sigma^{\prime}\right)+\mathbf{M}_{\mathbf{w}_{0}}\left(\Sigma^{\prime \prime}\right) .
\end{array}
$$

Then T^{\prime} and $\mathrm{T}^{\prime \prime}$ are minimizers of the thread problem in W_{0} with respect to Γ^{\prime} and $\Gamma^{\prime \prime}$ respectively.

Proof.

(1) We have

$$
\begin{aligned}
\mathbf{M}_{\mathbf{w}_{0}}(\partial S-\Gamma) & \leqq \mathbf{M}_{\mathbf{w}_{0}}\left(\partial S-\Gamma^{\prime}\right)+\mathbf{M}_{\mathbf{w}_{0}}\left(\Sigma^{\prime \prime}\right) \\
& =\mathbf{M}_{\mathbf{w}_{0}}\left(\Sigma^{\prime}\right)+\mathbf{M}_{\mathbf{w}_{0}}\left(\Sigma^{\prime \prime}\right) \\
& =\mathbf{M}_{\mathbf{w}_{0}}(\Sigma)=\mathbf{M}_{\mathbf{w}_{0}}(\partial T-\Gamma)
\end{aligned}
$$

From Prop. 1.3 we obtain

$$
\mathbf{M}_{\mathbf{w}_{0}}(\mathrm{~T}) \leqq \mathbf{M}_{\mathbf{w}_{0}}(\mathbf{S})
$$

(2) Let $S \in I_{n, \text { loc }}(U)$ satisfy spt $\left(S-T^{\prime}\right) \subset W_{0}$ and

$$
\mathbf{M}_{\mathbf{w}_{0}}\left(\partial \mathbf{S}-\Gamma^{\prime}\right)=\mathbf{M}_{\mathbf{w}_{0}}\left(\partial T^{\prime}-\Gamma^{\prime}\right)=\mathbf{M}_{\mathbf{w}_{0}}\left(\Sigma^{\prime}\right)
$$

Then we check as in the proof of part (1) that $S^{\prime \prime}=S+T^{\prime \prime}$ is an admissible comparison surface for T. This implies

$$
\mathbf{M}_{\mathbf{w}_{0}}(\mathrm{~T}) \leqq \mathbf{M}_{\mathbf{w}_{0}}\left(\mathrm{~S}^{\prime \prime}\right) \leqq \mathbf{M}_{\mathbf{w}_{0}}(\mathrm{~S})+\mathbf{M}_{\mathbf{w}_{0}}\left(\mathrm{~T}^{\prime \prime}\right)
$$

From the mass-additivity of T^{\prime} and $\mathrm{T}^{\prime \prime}$ in W_{0} we conclude

$$
\mathbf{M}_{\mathbf{W}_{0}}\left(\mathrm{~T}^{\prime}\right) \leqq \mathbf{M}_{\mathbf{W}_{0}}(\mathbf{S})
$$

2. THE FIRST VARIATION OF THE THREAD

The first variation of the mass of $\mathrm{S} \in \mathrm{I}_{n, \mathrm{loc}}(\mathrm{U})$ is given by (cf. [A W], [SL])

$$
\delta \mathbf{S}(\mathbf{X})=\int \operatorname{div}_{\mathbf{S}} \mathbf{X} d \mu_{\mathbf{S}}
$$

where $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{U} ; \mathbb{R}^{n+k}\right)$.
We define the support of $\delta \mathrm{S}$ in U by

$$
\operatorname{spt} \delta S=\left\{x \in U / \forall \rho>0, \exists X_{\rho} \in C_{c}^{1}\left(B_{\rho}(x) ; \mathbb{R}^{n+k}\right) \text { s. t. } \delta S\left(X_{\rho}\right) \neq 0\right\}
$$

In order to obtain some control on the first variation of the threadboundary Σ introduced in section 1 we shall have to make use of the following crucial lemma.

2.1. Lemma

Let $\mathrm{T} \in \mathrm{I}_{n \text {, loc }}(\mathrm{U})$ be a minimizer of the thread problem with respect to $\Gamma \in \mathrm{I}_{n-1, \text { loc }}(\mathrm{U})$.

Then the inequality
(21) $|\delta \mathrm{T}(\mathrm{X}) \delta \Sigma(\mathrm{Y})-\delta \mathrm{T}(\mathrm{Y}) \delta \Sigma(\mathrm{X})|$

$$
\leqq|\delta \Sigma(\mathrm{Y})| \int|\mathrm{X} \wedge \vec{\Gamma}| d \mu_{\Gamma}+|\delta \Sigma(\mathrm{X})| \int|\mathrm{Y} \wedge \vec{\Gamma}| d \mu_{\Gamma}
$$

holds for every $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~V} ; \mathbb{R}^{n+k}\right)$ and $\mathrm{Y} \in \mathrm{C}_{c}^{1}\left(\mathrm{~W} ; \mathbb{R}^{n+k}\right)$ whenever
$\mathrm{V}, \mathrm{W} \subset \mathrm{U} \sim \operatorname{spt} \partial \Gamma$ are disjoint open sets.
The proof of Lemma 2.1 is based on Lagrange multiplier techniques used in [HW] and [DHL]. We give a slight generalization of Lemma 2 of [DHL] for the case where some nondifferentiable functions are involved.

2.2. Lemma

Let $f(s, t), g(s, t)$ be real-valued functions of $(s, t) \in\left[-s_{0}, s_{0}\right] \times\left[-t_{0}, t_{0}\right]$, $s_{0}>0, t_{0}>0$ which split in the form

$$
\begin{gathered}
f(s, t)=f_{0}+f_{1}(s)+\bar{f}_{1}(s)+f_{2}(t)+\bar{f}_{2}(t) \\
g(s, t)=g_{0}+g_{1}(s)+g_{2}(t)
\end{gathered}
$$

where f_{0}, g_{0} are constants and

$$
f_{1}(0)=\bar{f}_{1}(0)=f_{2}(0)=\bar{f}_{2}(0)=g_{1}(0)=g_{2}(0)=0 .
$$

Suppose g_{2} is continuous in $\left[-t_{0}, t_{0}\right]$, the derivatives $f_{1}^{\prime}(0), f_{2}^{\prime}(0), g_{1}^{\prime}(0)$, $g_{2}^{\prime}(0)$ exist and $g_{2}^{\prime}(0)=1$.

Suppose furthermore that

$$
f_{0}=f(0,0) \leqq f(s, t)
$$

for every $(s, t) \in\left[-s_{0}, s_{0}\right] \times\left[-t_{0}, t_{0}\right]$ such that $g(s, t)=g_{0}$.
Then

$$
\begin{equation*}
\left|f_{1}^{\prime}(0)-f_{2}^{\prime}(0) g_{1}^{\prime}(0)\right| \leqq \varlimsup_{s \rightarrow 0}\left|\frac{\bar{f}_{1}(s)}{s}\right|+\varlimsup_{t \rightarrow 0}\left|\frac{\bar{f}_{2}(t)}{t}\right|\left|g_{1}^{\prime}(0)\right| . \tag{2.2}
\end{equation*}
$$

Proof. - We refer the reader to Lemma 2 of [DHL]. The auxiliary function $\tau(s)$ defined there depends only on g_{1} and g_{2}. One then immediately verifies that the difference quotient expressions corresponding to the left hand side of (2.2) can be estimated by difference quotient terms involving \bar{f}_{1} and \bar{f}_{2}.

Proof of Lemma 2.1. - Let $\left(\varphi_{s}\right), s \in\left[-s_{0}, s_{0}\right]$ be a one-parameter family of diffeomorphisms of U which leave the boundary of Γ fixed, that is $\varphi_{0}=\mathrm{id}$ and $\operatorname{spt}\left(\varphi_{s}-\mathrm{id}\right) \subset \mathrm{V} \subset \mathrm{U} \sim \operatorname{spt} \partial \Gamma$ for $s \in\left[-s_{0}, s_{0}\right]$. Suppose furthermore that φ_{s} satisfies

$$
\begin{equation*}
\mathbf{M}_{\mathbf{V}}\left(\varphi_{s \#} \Sigma\right)=\mathbf{M}_{\mathbf{V}}(\Sigma) . \tag{2.3}
\end{equation*}
$$

Then

$$
\mathrm{T}_{s}=\varphi_{s \sharp} \mathrm{~T}-\varphi_{\sharp}(\llbracket(0, s) \rrbracket \times \Gamma)
$$

is an admissible comparison surface for T in V. Indeed we have $\operatorname{spt}\left(\mathrm{T}-\mathrm{T}_{s}\right) \subset \mathrm{V}$ and

$$
\begin{align*}
\partial \mathrm{T}_{s}-\Gamma & =\partial\left(\varphi_{s \sharp} \mathrm{~T}-\varphi_{\sharp}(\llbracket(0, s) \rrbracket \times \Gamma)-\Gamma\right) \tag{2.4}\\
& =\varphi_{s \sharp} \Sigma+\varphi_{s \sharp} \Gamma-\partial \varphi_{\sharp}(\llbracket(0, s) \rrbracket \times \Gamma)-\Gamma \\
& =\varphi_{s \sharp} \Sigma+\varphi_{s \sharp} \Gamma-\varphi_{\sharp} \Gamma+\Gamma-\Gamma \\
& =\varphi_{s \sharp} \Sigma .
\end{align*}
$$

Here we used the homotopy formula for currents taking $\operatorname{spt}\left(\varphi_{s}-\mathrm{id}\right) \cap \operatorname{spt} \partial \Gamma=\varnothing$ into account.

In particular, (2.4) yields $\mathbf{M}\left(\partial \mathrm{T}_{s}-\Gamma\right)=\mathbf{M}(\partial \mathbf{T}-\Gamma)$ which by the minimality of T implies

$$
\begin{align*}
\mathbf{M}_{\mathbf{V}}(\mathrm{T}) & \leqq \mathbf{M}_{\mathbf{V}}\left(\mathbf{T}_{s}\right) \tag{2.5}\\
& \leqq \mathbf{M}_{\mathbf{V}}\left(\varphi_{s \sharp} \mathbf{T}\right)+\mathbf{M}_{\mathbf{V}}\left(\varphi_{\sharp}(\llbracket(0, s) \rrbracket \times \Gamma)\right) .
\end{align*}
$$

Suppose $\varphi_{s}(x)=x+s X$ where $X \in C_{c}^{1}\left(\mathrm{~V} ; \mathbb{R}^{n+k}\right)$. Then we compute as in ([BJ], Lemma 3.1)

$$
\begin{aligned}
& \mathbf{M}\left(\varphi_{\xi}([(0, s) \rrbracket \times \Gamma))\right. \\
&=\int_{0}^{s} \int\left|\dot{\varphi}_{\tau}(x) \wedge\left(d_{x} \varphi_{\tau}\right)_{\ddagger}(\vec{\Gamma}(x))\right| d \mu_{\Gamma}(x) d \tau \\
&=\int_{0}^{s} \int\left|\mathrm{X} \wedge \vec{\Gamma}(x)+\mathrm{X} \wedge \tau^{n-1}(\mathrm{DX}(x))_{\xi}(\vec{\Gamma}(x))\right| d \mu_{\Gamma}(x) d \tau
\end{aligned}
$$

which implies

$$
\begin{equation*}
\varlimsup_{s \rightarrow 0}\left|\frac{\mathbf{M}\left(\varphi_{\ddagger}(\llbracket(0, s) \rrbracket \times \Gamma)\right)}{s}\right|=\int|\mathbf{X} \wedge \vec{\Gamma}| d \mu_{\Gamma} . \tag{2.6}
\end{equation*}
$$

Let now V, W be two disjoint open sets which are compactly contained in $U \sim \operatorname{spt} \partial \Gamma$ and choose variation vectorfields $X \in C_{c}^{1}\left(V ; \mathbb{R}^{n+k}\right)$ and $\mathrm{Y} \in \mathrm{C}_{c}^{1}\left(\mathrm{~W} ; \mathbb{R}^{n+k}\right)$. Let $\boldsymbol{\Omega} \subset \mathrm{U}$ be an open set such that $\mathrm{V} \cup \mathrm{W} \subset \Omega$. For one-parameter deformations

$$
\varphi_{s}(x)=x+s \mathrm{X}(x), \quad \psi_{t}(x)=x+t \mathrm{Y}(x)
$$

$(s, t) \in\left[-s_{0}, s_{0}\right] \times\left[-t_{0}, t_{0}\right]$, we define

$$
\begin{gathered}
f_{0}=\mathbf{M}_{\Omega}(\mathrm{T}), \quad g_{0}=\mathbf{M}_{\Omega}(\Sigma) \\
f_{1}(s)=\mathbf{M}_{\mathrm{V}}\left(\varphi_{s \sharp} \mathrm{~T}\right)-\mathbf{M}_{\mathrm{V}}(\mathrm{~T}) \\
\overline{f_{1}}(s)=\mathbf{M}_{\mathbf{V}}\left(\varphi_{\sharp}(\llbracket(0, s) \rrbracket \times \Gamma)\right) \\
f_{2}(t)=\mathbf{M}_{\mathbf{w}}\left(\psi_{t ¥} \mathrm{~T}\right)-\mathbf{M}_{\mathbf{W}}(\mathrm{T}) \\
\overline{f_{2}}(t)=\mathbf{M}_{\mathbf{W}}\left(\psi_{\sharp}(\llbracket(0, t) \rrbracket \times \Gamma)\right) \\
g_{1}(s)=\mathbf{M}_{\mathbf{V}}\left(\varphi_{s \sharp} \Sigma\right)-\mathbf{M}_{\mathbf{V}}(\Sigma) \\
g_{2}(t)=\mathbf{M}_{\mathbf{W}}\left(\psi_{t \#} \Sigma\right)-\mathbf{M}_{\mathbf{w}}(\Sigma)
\end{gathered}
$$

and $f(s, t), g(s, t)$ as in Lemma 2.2. Let

$$
\mathrm{T}_{s, t}=\varphi_{s \sharp} \mathrm{~T}-\varphi_{\sharp}(\llbracket(0, s) \rrbracket \times \Gamma)+\psi_{t \sharp} \mathrm{~T}-\psi_{\sharp}(\llbracket(0, t) \rrbracket \times \Gamma) .
$$

From the definition of φ_{s} and ψ_{t} we infer

$$
\operatorname{spt}\left(\mathrm{T}_{s, t}-\mathrm{T}\right) \subset \Omega
$$

Furthermore we derive from (2.4)

$$
\mathbf{M}_{\Omega}\left(\partial \mathrm{T}_{s, t}-\Gamma\right)=\mathbf{M}_{\mathbf{v}}\left(\varphi_{s \sharp} \Sigma\right)+\mathbf{M}_{\mathbf{w}}\left(\psi_{t \sharp} \Sigma\right)+\mathbf{M}_{\Omega \sim(\mathbf{v} \cup \mathbf{w})}(\Sigma)
$$

For those $(s, t) \in\left[-s_{0}, s_{0}\right] \times\left[-t_{0}, t_{0}\right]$ which satisfy $g(s, t)=g_{0}$ we have

$$
\mathbf{M}_{\mathbf{V}}\left(\varphi_{s \sharp} \Sigma\right)+\mathbf{M}_{\mathbf{w}}\left(\psi_{t \sharp} \Sigma\right)=\mathbf{M}_{\mathbf{V}}(\Sigma)+\mathbf{M}_{\mathbf{w}}(\Sigma) .
$$

This implies [for such (s, t)]

$$
\mathbf{M}_{\Omega}\left(\partial \mathrm{T}_{s, t}-\Gamma\right)=\mathbf{M}_{\Omega}(\partial \mathrm{T}-\Gamma)
$$

which establishes $\mathrm{T}_{s, t}$ as an admissible comparison surface. As in (2.5) we conclude

$$
\begin{aligned}
\mathbf{M}_{\Omega}(\mathrm{T}) \leqq & \mathbf{M}_{\Omega}\left(\mathrm{T}_{s, t}\right) \\
& \leqq \mathbf{M}_{\mathbf{V}}\left(\varphi_{s \sharp} \mathrm{~T}\right)+\mathbf{M}_{\mathbf{W}}\left(\psi_{t \sharp} \mathbf{T}\right)+\mathbf{M}_{\mathbf{V}}\left(\varphi_{\sharp}(\llbracket(0, s) \rrbracket \times \Gamma)\right) \\
& +\mathbf{M}_{\mathbf{W}}\left(\psi_{\#}(\llbracket(0, t) \rrbracket \times \Gamma)\right)+\mathbf{M}_{\Omega \sim(\mathrm{V} \cup \mathbf{w})}(\mathrm{T}) .
\end{aligned}
$$

In view of the definition of $f_{1}, \bar{f}_{1}, f_{2}$ and \bar{f}_{2} this implies for (s, t) satisfying $g(s, t)=g_{0}$

$$
0 \leqq f_{1}(s)+\bar{f}_{1}(s)+f_{2}(t)+\bar{f}_{2}(t)
$$

which is equivalent to

$$
f(0,0) \leqq f(s, t)
$$

for every (s, t) s.t. $g(s, t)=g_{0}$. Moreover

$$
f_{1}(0)=\bar{f}_{1}(0)=f_{2}(0)=\bar{f}_{2}(0)=g_{1}(0)=g_{2}(0)=0
$$

and all the differentiability and continuity requirements of Lemma 2.2 are satisfied.

In case $\delta \Sigma(X)=0$ for all $X \in C_{c}^{1}\left(U \sim \operatorname{spt} \partial \Gamma ; \mathbb{R}^{n+k}\right)$ the statement of Lemma 2.1 holds trivially. Hence we may assume $\mathrm{Y} \in \mathrm{C}_{c}^{1}\left(\mathrm{~W} ; \mathbb{R}^{n+k}\right)$ satisfies $\delta \Sigma(\mathrm{Y}) \neq 0$ and set $\mathrm{Y}^{\prime}=\delta \Sigma(\mathrm{Y})^{-1} \mathrm{Y}$. This gives $\delta \Sigma\left(\mathrm{Y}^{\prime}\right)=1$ which by the definition of g_{2} represents the condition $g_{2}^{\prime}(0)=1$.

We can now apply Lemma 2.2, the definition of first variation to $f_{1}, f_{2}, \mathrm{~g}_{1}, g_{2}$ and (2.6) to \bar{f}_{1} and \bar{f}_{2} to arrive at

$$
\left|\delta \mathrm{T}(\mathrm{X})-\delta \mathrm{T}\left(\mathrm{Y}^{\prime}\right) \delta \Sigma(\mathrm{X})\right| \leqq \int|\mathrm{X} \wedge \vec{\Gamma}| d \mu_{\Gamma}+|\delta \Sigma(\mathrm{X})| \int\left|\mathrm{Y}^{\prime} \wedge \vec{\Gamma}\right| d \mu_{\Gamma}
$$

for $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~V} ; \mathbb{R}^{n+k}\right)$ and $\mathrm{Y}^{\prime}=\delta \Sigma(\mathrm{Y})^{-1} \mathrm{Y} \in \mathrm{C}_{c}^{1}\left(\mathrm{~W} ; \mathbb{R}^{n+k}\right)$ which completes the proof of (2.1).

We now turn to establishing the main result of this paper.

2.3. Theorem

Let $\mathrm{T} \in \mathrm{I}_{n, \text { loc }}(\mathrm{U})$ be a minimizer of the thread problem with respect to $\Gamma \in \mathrm{I}_{n-1, \mathrm{loc}}(\mathrm{U})$.

Suppose

$$
\begin{equation*}
\operatorname{spt} \delta \Sigma \sim \operatorname{spt} \partial \Gamma \neq \varnothing \tag{A1}
\end{equation*}
$$

(A2) There exists a point $x_{0} \in \operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma$, a radius $\rho<\operatorname{dist}\left(x_{0}, \operatorname{spt} \hat{\sigma}\right)$ and a local decomposition

$$
T L B_{\rho}\left(x_{0}\right)=T_{0}\left\llcorner B_{\rho}\left(x_{0}\right)+\left(T-T_{0}\right)\left\llcorner B_{\rho}\left(x_{0}\right)\right.\right.
$$

satisfying $\mathrm{T}_{0} \in \mathrm{I}_{\text {, loc }}(\mathrm{U})$,
(1) $\left\{\begin{array}{l}\mathbf{M}\left(T\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)=\mathbf{M}\left(T_{0}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)+\mathbf{M}\left(\left(T-T_{0}\right)\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)\right)\right.\right. \\ \mathbf{M}\left(\Sigma\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)=\mathbf{M}\left(\Sigma_{0}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)+\mathbf{M}\left(\left(\Sigma-\Sigma_{0}\right)\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)\right.\right.\right.\end{array}\right.$
for $\Sigma_{0}=\partial \mathrm{T}_{0}$ and

$$
\begin{equation*}
x_{0} \in \operatorname{spt} \delta \mathrm{~T}_{0} \tag{2}
\end{equation*}
$$

Then we can find a number $\lambda_{\Sigma} \in(0, \infty)$ such that

$$
\begin{equation*}
\left|\delta \mathrm{T}(\mathrm{X})+\lambda_{\Sigma} \delta \Sigma(\mathrm{X})\right| \leqq \int|\mathrm{X} \wedge \vec{\Gamma}| d \mu_{\Gamma} \tag{2.7}
\end{equation*}
$$

holds for every $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{U} \sim \operatorname{spt} \partial \Gamma ; \mathbb{R}^{n+k}\right)$, where $\lambda_{\mathrm{\Sigma}}$ is given by

$$
\begin{equation*}
\delta \mathrm{T}_{0}(\mathrm{X})+\lambda_{\Sigma} \delta \Sigma_{0}(\mathrm{X})=0 \tag{2.8}
\end{equation*}
$$

for every $\mathbf{X} \in \mathbf{C}_{c}^{1}\left(\mathbf{B}_{\rho}\left(x_{0}\right) ; \mathbb{R}^{n+k}\right)$.
Moreover (2.8), at any point of $\operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma$ satisfying (A2) and for any possible decomposition at such a point, is valid with the same $\lambda_{\Sigma}>0$.

2.4. Remark

(1) If (A1) is not satisfied Σ is a stationary thread away from $\partial \Sigma=-\partial \Gamma$. For the structure of such boundaries we refer to Corollary 2.10 and Theorem 3.1.
(2) Although in the codimension one case, i.e. $\mathrm{U} \subset \mathbb{R}^{n+1}$ condition (A2) can be verified under reasonably weak hypotheses it nevertheless appears to be a rather artificial assumption which one would hope, could be removed altogether.

In fact if $U \subset \mathbb{R}^{n+1}$ it suffices to assume the existence of at least one regular point of $\operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma$ in the sense of Proposition 2.7 (1).

Proof of Theorem 2.3. - We first prove (2.7) assuming

$$
\begin{equation*}
\text { spt } \delta \mathrm{T} \sim \operatorname{spt} \Gamma \neq \varnothing \tag{B2}
\end{equation*}
$$

From Remark 1.2 (2) and ([BJ], Lemma 3.1) we infer

$$
\begin{equation*}
|\delta \mathrm{T}(\mathrm{X})| \leqq \int|\mathrm{X} \wedge \overline{\partial \mathrm{~T}}| d \mu_{\partial \mathrm{T}} \tag{2.9}
\end{equation*}
$$

for every $X \in C_{c}^{1}\left(U ; \mathbb{R}^{n+k}\right)$. In particular, the representation formula for $\delta \mathrm{T}$ (cf. [SL], Chapt. 8])

$$
\begin{equation*}
\delta T(X)=\int v_{\partial \mathrm{T}} \cdot \mathrm{X} d \mu_{\partial \mathrm{T}} \tag{2.10}
\end{equation*}
$$

Vol. 6, n^{c} 4-1989.
holds for $X \in C_{c}^{1}\left(U ; \mathbb{R}^{n+k}\right)$, where $v_{\partial T}$ is a $\mu_{\partial T}$-measurable vectorfield in U satisfying $\left|v_{\partial T}\right| \leqq 1 \mu_{\partial T}-$ a. e. Assumption (B2) implies that

$$
\begin{equation*}
\mu_{\partial \mathrm{T}}\left(\left\{x \in \operatorname{spt} \Sigma \sim \operatorname{spt} \Gamma / v_{\partial T}(x) \neq 0\right\}\right)>0 . \tag{2.11}
\end{equation*}
$$

Hence we may select three points $x_{1}, x_{2}, x_{3} \in \operatorname{spt} \delta T \sim \operatorname{spt} \Gamma$, radii $\rho_{i}<\operatorname{dist}\left(x_{i}, \operatorname{spt} \Gamma\right)$ s. t. $\quad \mathbf{B}_{\rho_{i}}\left(x_{i}\right) \cap \mathrm{B}_{\rho_{j}}\left(x_{j}\right)=\varnothing$ for $i \neq j(i, j=1,2,3)$ and variation vectorfields $\mathrm{X}_{i} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\mathrm{p}_{i}}\left(x_{i}\right) ; \mathbb{R}^{n+k}\right)$ which satisfy

$$
\begin{equation*}
\delta \mathrm{T}\left(\mathrm{X}_{i}\right) \neq 0, \quad i=1,2,3 . \tag{2.12}
\end{equation*}
$$

From (A1) we obtain the existence of a point $x_{0} \in \operatorname{spt} \delta \Sigma \sim \operatorname{spt} \partial \Gamma$, a radius $\rho_{0}<\operatorname{dist}\left(y_{0}, \operatorname{spt} \partial \Gamma\right)$ and a vectorfield $Y_{0} \in C_{c}^{1}\left(B_{\rho_{0}}\left(y_{0}\right) ; \mathbb{R}^{n+k}\right)$ such that

$$
\begin{equation*}
\delta \Sigma\left(Y_{0}\right) \neq 0 \tag{2.13}
\end{equation*}
$$

We may assume $\mathrm{B}_{\mathrm{\rho}_{0}}\left(y_{0}\right) \cap \mathrm{B}_{\boldsymbol{\rho}_{i}}\left(x_{i}\right)=\varnothing$ for $i=1,2$, 3. Otherwise, by virtue of (2.11), we can choose different $x_{i} \in \operatorname{spt} \delta \mathrm{~T} \sim \operatorname{spt} \Gamma$ and $\rho_{i}>0$.

Applying now (2.1) to the pairs X_{i}, Y_{0} for $i=1,2,3$ we obtain

$$
\left|\delta \mathrm{T}\left(\mathrm{X}_{i}\right) \delta \Sigma\left(\mathrm{Y}_{0}\right)-\delta \mathrm{T}\left(\mathrm{Y}_{0}\right) \delta \Sigma\left(\mathrm{X}_{i}\right)\right| \leqq\left|\delta \Sigma\left(\mathrm{X}_{i}\right)\right| \int\left|\mathrm{Y}_{0} \wedge \vec{\Gamma}\right| d \mu_{\mathrm{r}}
$$

Hence from (2.12) and (2.13) we deduce

$$
\begin{equation*}
\delta \Sigma\left(\mathrm{X}_{i}\right) \neq 0, \quad i=1,2,3 . \tag{2.14}
\end{equation*}
$$

If we apply (2.1) to the pairs X_{i}, X_{3} for $i=1,2$ and take (2.14) into account we derive

$$
\delta \mathrm{T}\left(\mathrm{X}_{3}\right)-\frac{\delta \mathrm{T}\left(\mathrm{X}_{1}\right)}{\delta \Sigma\left(\mathrm{X}_{1}\right)} \delta \Sigma\left(\mathrm{X}_{3}\right)=\delta \mathrm{T}\left(\mathrm{X}_{3}\right)-\frac{\delta \mathrm{T}\left(\mathrm{X}_{2}\right)}{\delta \Sigma\left(\mathrm{X}_{2}\right)} \delta \Sigma\left(\mathrm{X}_{3}\right)
$$

which implies, in view of (2.14) again,

$$
\frac{\delta \mathrm{T}\left(\mathrm{X}_{1}\right)}{\delta \Sigma\left(\mathrm{X}_{1}\right)}=\frac{\delta \mathrm{T}\left(\mathrm{X}_{2}\right)}{\delta \Sigma\left(\mathrm{X}_{2}\right)}
$$

At this stage we define

$$
\begin{equation*}
\lambda_{\Sigma}=-\frac{\delta T\left(X_{1}\right)}{\delta \Sigma\left(\mathrm{X}_{1}\right)} \neq 0 . \tag{2.15}
\end{equation*}
$$

An arbitrary vectorfield $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{U} \sim \operatorname{spt} \partial \Gamma ; \mathbb{R}^{n+k}\right)$ we decompose as follows: $\mathrm{X}=\mathrm{X}^{(1)}+\mathrm{X}^{(2)}$, where $\mathrm{X}^{(i)}=\mathrm{X} \eta^{(i)}(i=1,2)$ and $\eta^{(i)} \in \mathrm{C}^{\infty}(\mathrm{U})$ satisfies spt $\eta^{(i)} \cap \mathrm{B}_{\mathrm{p}_{i}}\left(x_{i}\right)=\varnothing, 0 \leqq \eta^{(i)} \leqq 1$ and $\eta^{(1)}+\eta^{(2)}=1$.

Using (2.1) again, this time with $\mathrm{X}_{i}, \mathrm{X}^{(i)}(i=1,2)$, we obtain

$$
\left|\delta \mathbf{T}\left(\mathbf{X}^{(i)}\right)+\lambda_{\Sigma} \delta \Sigma\left(\mathbf{X}^{(i)}\right)\right| \leqq \int\left|\mathbf{X}^{(i)} \wedge \vec{\Gamma}\right| d \mu_{\Gamma}
$$

for $i=1,2$ which in turn establishes (2.7). Note that

$$
\begin{equation*}
\delta \mathrm{T}(\mathrm{X})+\lambda_{\Sigma} \delta \Sigma(\mathrm{X})=0 \tag{2.16}
\end{equation*}
$$

holds for all $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{U} \sim \operatorname{spt} \Gamma ; \mathbb{R}^{n+k}\right)$.
Before we prove the result under the general assumption we want to show that (2.16) implies $\lambda_{\Sigma}>0$.
We already know $\lambda_{\Sigma} \neq 0$ [see (2.15)]. Suppose $\lambda_{\Sigma}<0$. Select a variation $\mathrm{Y} \in \mathrm{C}_{c}^{1}\left(\mathrm{U} \sim \operatorname{spt} \Gamma ; \mathbb{R}^{n+k}\right)$ satisfying $\delta \Sigma(\mathrm{Y})<0$. (2.16) then yields $\delta \mathrm{T}(\mathrm{Y})<0$. If we let $\left(\psi_{t}\right)$ denote the one-parameter family of deformations generated by Y this implies that for some small $t>0$ we have

$$
\mathbf{M}_{\mathrm{spt} Y}\left(\psi_{t \sharp} T\right)<\mathbf{M}_{\mathrm{spt}}(\mathbf{T})
$$

and

$$
\mathbf{M}_{\mathrm{spt} \mathrm{Y}}\left(\psi_{t \#} \Sigma\right)<\mathbf{M}_{\mathrm{spt} \mathrm{Y}}(\Sigma)
$$

which in view of Proposition 1.3 contradicts the minimality of T.
Suppose now that condition (A2) holds instead of (B2).
By virtue of Proposition (1.7) (2) and (A2) (1) T_{0} minimizes the thread problem in $\mathrm{B}_{\mathrm{\rho}}\left(x_{0}\right)$ with respect to $\Gamma=0$. Hence in view of (A2) (2) [which for T_{0} reduces to condition (B2)] and (2.11) we may select two points $x_{1}, x_{2} \in \operatorname{spt} \delta \mathrm{~T}_{0} \cap \operatorname{spt} \Sigma_{0}$ and radii ρ_{1}, ρ_{2} such that $\mathbf{B}_{\rho_{1}}\left(x_{1}\right) \cap \mathbf{B}_{\rho_{2}}\left(x_{2}\right)=\varnothing$ and $B_{\rho_{1}}\left(x_{1}\right) \cup B_{\rho_{2}}\left(x_{2}\right) \subset B_{\rho}\left(x_{0}\right)$.
For $i=1,2$ we define

$$
\begin{gather*}
\mathrm{T}_{i}=\mathrm{T}-\left(\mathrm{T}-\mathrm{T}_{0}\right)\left\llcorner\mathrm{B}_{\mathrm{\rho}_{i}}\left(x_{i}\right)\right. \\
\Gamma_{i}=\Gamma-\Gamma\left\llcorner\mathrm{B}_{\mathrm{\rho}_{i}}\left(x_{i}\right)\right. \tag{2.17}\\
\Sigma_{i}=\partial \mathrm{T}_{i}-\Gamma_{i} \\
\mathrm{U}_{i}=\left(\mathrm{U} \sim \overline{\mathrm{~B}}_{\mathrm{\rho}_{i}}\left(x_{i}\right)\right) \cup \mathrm{B}_{\mathrm{\rho}_{i} / 2}\left(x_{i}\right)
\end{gather*}
$$

such that

$$
\begin{gather*}
\mathrm{T}_{i}=\mathrm{T}_{0} \quad \text { in } \mathrm{B}_{\mathrm{\rho}_{i}}\left(x_{i}\right), \\
\mathrm{T}_{i}=\mathrm{T} \quad \text { in } \mathrm{U} \sim \overline{\mathrm{~B}_{\rho_{i}}\left(x_{i}\right)} \tag{2.18}\\
\Sigma_{i}=\Sigma_{0} \quad \text { in } \mathrm{B}_{\mathrm{\rho}_{i}\left(x_{i}\right)}, \\
\Sigma_{i}=\Sigma \quad \text { in } \mathrm{U} \sim{\overline{\mathrm{~B}} \mathrm{\rho}_{i}}\left(x_{i}\right) .
\end{gather*}
$$

We infer from (A2) (1) that for $i=1,2$ the pair $\mathrm{T}_{i}, \mathrm{~T}-\mathrm{T}_{i}$ (replacing $\mathrm{T}^{\prime}, \mathrm{T}^{\prime \prime}$) satisfies the conditions of Proposition 1.7 (2) for every open $\mathrm{W} \subset \mathrm{U}_{i}$. Hence T_{i} is a minimizer of the thread problem in U_{i} with respect to Γ_{i}. Due to the choice of x_{1} and x_{2} we have for $i=1,2$ in U_{i}

$$
\begin{equation*}
\operatorname{spt} \delta \mathrm{T}_{i} \sim \operatorname{spt} \Gamma_{i} \neq \varnothing \tag{2.19}
\end{equation*}
$$

Moreover, in view of (A1) and (2.11) applied to T_{0} we may assume x_{i} and ρ_{i} to be chosen such that

$$
\begin{equation*}
\operatorname{spt} \delta \Sigma_{i} \sim \operatorname{spt} \partial \Gamma_{i} \neq \varnothing \tag{2.20}
\end{equation*}
$$

for $i=1,2$.
Therefore T_{i} satisfies the conditions (A1) and (B2). From (2.7), (2.16) and (2.18) we derive

$$
\begin{equation*}
\left|\delta \mathrm{T}_{i}(\mathrm{X})+\lambda_{\Sigma}^{i} \delta \Sigma_{i}(\mathrm{X})\right| \leqq \int\left|\mathrm{X} \wedge \vec{\Gamma}_{i}\right| d \mu_{\Gamma_{i}} \tag{2.21}
\end{equation*}
$$

for every $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{U}_{i} \sim \operatorname{spt} \partial \Gamma_{i} ; \mathbb{R}^{n+k}\right)$ where $\lambda_{\Sigma}^{i}>0$ is defined by

$$
\begin{equation*}
\delta \mathrm{T}_{0}(\mathrm{X})+\lambda_{\Sigma}^{i} \delta \Sigma_{0}(\mathrm{X})=0 \tag{2.22}
\end{equation*}
$$

for every $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\mathrm{\rho}_{i} / 2}\left(x_{i}\right) ; \mathbb{R}^{n+k}\right)(i=1,2)$.
The identity (2.22) and $x_{i} \in \operatorname{spt} \delta \mathrm{~T}_{0} \cap \operatorname{spt} \Sigma_{0}$ for $i=1,2$ imply that $x_{i} \in \operatorname{spt} \delta \Sigma_{0}$. Therefore T_{0}, which minimizes the thread problem in $\mathrm{B}_{\mathrm{\rho}}\left(x_{0}\right)$ with respect to $\Gamma=0$, also satisfies (A1) and (B2) there, such that (2.7) is applicable to T_{0}. This establishes (2.8) for every $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right) ; \mathbb{R}^{n+\kappa}\right)$. Hence $\lambda_{\Sigma}^{1}=\lambda_{\Sigma}^{2}$.

From (2.21) we now obtain in particular

$$
\begin{equation*}
\left|\delta \mathrm{T}(\mathrm{X})+\lambda_{\Sigma} \delta \Sigma(\mathrm{X})\right| \leqq \int|\mathrm{X} \wedge \vec{\Gamma}| d \mu_{\Gamma} \tag{2.23}
\end{equation*}
$$

for every $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{U} \sim \operatorname{spt} \partial \Gamma ; \mathbb{R}^{n+k}\right)$ satisfying $\operatorname{spt} \mathrm{X} \cap \mathrm{B}_{\mathrm{\rho}_{i}}\left(x_{i}\right)=\varnothing$, where $i=1,2$.

If $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{U} \sim \operatorname{spt} \partial \Gamma ; \mathbb{R}^{n+k}\right)$ is arbitrary, we decompose it as in the first part of the proof and apply (2.23) to arrive at inequality (2.7).

It remains to show that λ_{Σ} is independent of x_{0} and T_{0}.
Suppose that we have two decompositions at x_{0}, that is (A2) holds for T_{0} replaced by T_{0}^{1} and T_{0}^{2} respectively. From (2.8) we obtain

$$
\begin{equation*}
\delta \mathrm{T}_{0}^{i}(\mathrm{X})+\lambda_{\Sigma}^{i} \delta \Sigma_{0}^{i}(\mathrm{X})=0 \tag{2.24}
\end{equation*}
$$

for some $\lambda_{\Sigma}^{i}>0 \quad(i=1,2)$ and for every $X \in C_{c}^{1}\left(B_{\rho}\left(x_{0}\right) ; \mathbb{R}^{n+k}\right)$. Pick $y_{i} \in \operatorname{spt} \delta \mathrm{~T}_{0}^{i}$ and radii $\sigma_{i}(i=1,2)$ such that $\mathbf{B}_{\sigma_{1}}\left(y_{1}\right) \cap \mathbf{B}_{\sigma_{2}}\left(y_{2}\right)=\varnothing$ and $\mathbf{B}_{\sigma_{1}}\left(y_{1}\right) \cup \mathbf{B}_{\boldsymbol{\sigma}_{2}}\left(y_{2}\right) \subset \mathbf{B}_{\rho}\left(x_{0}\right)$. Then (2.24) implies $y_{i} \in \operatorname{spt} \delta \Sigma_{0}^{i}$.

Define

$$
\mathrm{T}_{1,2}=\mathrm{T}_{0}^{1}\left\llcorner\mathrm{~B}_{\sigma_{1}}\left(y_{1}\right)+\mathrm{T}_{0}^{2}\left\llcorner\mathrm{~B}_{\sigma_{2}}\left(y_{2}\right)\right.\right.
$$

In view of (A2) (1), for T_{0}^{1} and T_{0}^{2} respectively, $T_{1,2}$ and $T-T_{1,2}$ satisfy the conditions of Proposition 1.7 (2) in $U_{1,2}=B_{\sigma_{1} / 2}\left(y_{1}\right) \cup B_{\sigma_{2} / 2}\left(y_{2}\right)$. Thus $\mathrm{T}_{1,2}$ is a minimizer of the thread problem in $\mathrm{U}_{1,2}$ with respect to $\Gamma=0$.

Moreover since $y_{i} \in \mathrm{spt} \delta \mathrm{T}_{1,2} \cap \mathrm{spt} \delta \Sigma_{1,2}(i=1,2)$, where $\Sigma_{1,2}=\partial \mathrm{T}_{1,2}$, (A1) and (A2) are satisfied, which enables us to apply (2.7). Thus

$$
\begin{equation*}
\delta \mathrm{T}_{1,2}(\mathrm{X})+\lambda_{\Sigma}^{1,2} \delta \Sigma_{1,2}(\mathrm{X})=0 \tag{2.25}
\end{equation*}
$$

for every $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{U}_{1,2} ; \mathbb{R}^{n+k}\right)$ where $\lambda_{\Sigma}^{1,2}>0$.
By the definition of $T_{1,2}$ this reduces to

$$
\begin{equation*}
\delta \mathrm{T}_{0}^{i}(\mathrm{X})+\lambda_{\Sigma}^{1,2} \delta \Sigma_{0}^{i}(\mathrm{X})=0 \tag{2.26}
\end{equation*}
$$

for $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\sigma_{i / 2}}\left(y_{i}\right) ; \mathbb{R}^{n+k}\right), i=1,2$.
The fact that $y_{i} \in \operatorname{spt} \delta \Sigma_{0}^{i}$ implies the existence of vectorfields $\mathrm{Y}_{i} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\sigma_{i / 2}}\left(y_{i}\right) ; \mathbb{R}^{n+k}\right)$ which satisfy $\delta \Sigma_{0}^{i}\left(\mathrm{Y}_{i}\right) \neq 0$. Applying now (2.24) and (2.26) to $Y_{i}(i=1,2)$ yields $\lambda_{\Sigma}^{1,2}=\lambda_{\Sigma}^{1}=\lambda_{\Sigma}^{2}$.

For decomposition components at distinct points of $\operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma$ the same argument obviously works.

This completes the proof of the theorem.

2.5. Corollary

Let $\mathrm{T} \in \mathrm{I}_{n, \text { loc }}(\mathrm{U})$ satisfy the assumptions of Theorem 2.3. Suppose that Γ additionally satisfies
(A3) (1) For every $x_{0} \in \operatorname{spt} \Gamma \sim \operatorname{spt} \partial \Gamma$ there exists a radius $\rho\left(x_{0}\right)<\operatorname{dist}\left(x_{0}, \operatorname{spt} \partial \Gamma\right)$ and a constant $c\left(x_{0}\right)$ such that for every $x \in \mathrm{~B}_{\rho\left(x_{0}\right)}\left(x_{0}\right)$ and $\rho<\rho\left(x_{0}\right)-\left|x-x_{0}\right|$

$$
\mu_{\Gamma}\left(\mathrm{B}_{\rho}\left(x_{0}\right)\right) \leqq c\left(x_{0}\right) \rho^{n-2+\beta}
$$

for some $\beta>0$.
(2) For every $\mathrm{W} \propto \mathrm{U} \sim \mathrm{spt} \partial \Gamma$ there is a constant $c(\mathrm{~W})$ such that

$$
\mid \theta_{\Gamma}\left\llcorner\mathbf{W} \mid \leqq c(\mathbf{W}), \quad \mu_{\Gamma}-\text { a. e. } \quad \text { in } \mathbf{W}\right.
$$

where θ_{Γ} is the multiplicity function of Γ.
Then Σ has bounded generalized mean curvature H_{Σ}, in fact

$$
\begin{equation*}
\int \operatorname{div}_{\Sigma} \mathbf{X} d \mu_{\Sigma}=-\int \mathbf{H}_{\Sigma} \cdot \mathbf{X} d \mu_{\Sigma} \tag{2.27}
\end{equation*}
$$

for every $X \in C_{c}^{1}\left(U \sim \operatorname{spt} \partial \Gamma ; \mathbb{R}^{n+k}\right)$, where H_{Σ} satisfies

$$
\begin{equation*}
\left\lvert\, \mathrm{H}_{\Sigma}\left\llcorner\mathrm{W} \left\lvert\, \leqq \frac{c(\mathrm{~W})}{\lambda_{\Sigma}}\right., \quad \mu_{\Sigma}-\mathrm{a} . \mathrm{e} . \quad \text { in } \mathrm{W}\right.\right. \tag{2.28}
\end{equation*}
$$

for every $\mathrm{W} \subset \mathrm{U} \sim \operatorname{spt} \partial \Gamma$, where $c(\mathrm{~W})$ depends on W only.
Proof. - We combine (2.7) and (2.9) to obtain

$$
|\delta \Sigma(\mathrm{X})| \leqq \frac{1}{\lambda_{\Sigma}}\left(\int|\mathrm{X} \wedge \vec{\Gamma}| d \mu_{\Gamma}+\int|\mathrm{X} \wedge \overrightarrow{\partial \mathrm{~T}}| d \mu_{\partial \mathrm{T}}\right)
$$

for $X \in C_{c}^{1}\left(U \sim \operatorname{spt} \partial \Gamma ; \mathbb{R}^{n+k}\right)$, which in view of the fact that $\mu_{\partial \mathrm{T}} \leqq \mu_{\Gamma}+\mu_{\Sigma}$ yields

$$
|\delta \Sigma(\mathrm{X})| \leqq \frac{1}{\lambda_{\Sigma}} \int|\mathrm{X}| d \mu_{\Sigma}+\frac{2}{\lambda_{\Sigma}} \int|\mathrm{X}| d \mu_{\Gamma}
$$

for every $X \in C_{c}^{1}\left(\mathrm{U} \sim \operatorname{spt} \partial \Gamma ; \mathbb{R}^{n+k}\right)$.
We now proceed as in ([SL] 17.6) to obtain for every $x \in B_{\rho\left(x_{0}\right)}\left(x_{0}\right)$ and \mathscr{L}^{1}-a. e. $\rho \leqq \rho\left(x_{0}\right)-\left|x-x_{0}\right|$

$$
\frac{d}{d \rho}\left(\rho^{1-n} \mu_{\Sigma}\left(B_{\rho}\left(x_{0}\right)\right)\right) \geqq-\frac{1}{\lambda_{\Sigma}} \rho^{1-n} \mu_{\Sigma}\left(B_{\rho}\left(x_{0}\right)\right)-\frac{2}{\lambda_{\Sigma}} \rho^{1-n} \mu_{\Gamma}\left(B_{\rho}\left(x_{0}\right)\right)
$$

which by (A3) (1) implies

$$
\frac{d}{d \rho}\left(e^{\lambda_{\Sigma}^{-1} \rho} \rho^{1-n} \mu_{\Sigma}\left(\mathrm{B}_{\rho}\left(x_{0}\right)\right)\right) \geqq-\frac{2}{\lambda_{\Sigma}} c\left(x_{0}\right) e^{\lambda_{\Sigma}^{-1} \rho} \rho^{\beta-1}
$$

Integrating we arrive at

$$
e^{\lambda_{\bar{\Sigma}}^{1} \sigma} \sigma^{1-n} \mu_{\Sigma}\left(\mathbf{B}_{\sigma}\left(x_{0}\right)\right) \leqq e^{\lambda_{\Sigma}^{-1} \rho} \rho^{1-n} \mu_{\Sigma}\left(\mathbf{B}_{\rho}\left(x_{0}\right)\right)+\frac{1}{\lambda_{\Sigma}} c\left(x_{0}, \beta\right)\left(\rho^{\beta}-\sigma^{\beta}\right)
$$

for $0<\sigma<\rho \leqq \rho\left(x_{0}\right)-\left|x-x_{0}\right|$.
Hence, we can check as in ([SL], Cor. 17.8) that $\theta^{n-1}\left(\mu_{\Sigma},.\right)$ is uppersemicontinuous and we can apply ([SL], 17.9 (i)) to conclude $\theta_{\Sigma}(x) \geqq 1$ for every $x \in \operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma$. (Recall that $\theta_{\Sigma} \geqq 1 \mu_{\Sigma}-$ a. e. since Σ is an integer multiplicity current.) Using this in combination with (A3) (2) we infer
from the definition of μ_{Σ} and μ_{Γ} that

$$
\mu_{\Gamma}(\operatorname{spt} \Sigma \cap \mathbf{W}) \leqq c(\mathbf{W}) \mu_{\Sigma}(\mathbf{W})
$$

for any $\mathrm{W} \subset \mathrm{U} \sim \operatorname{spt} \partial \Gamma$.
Thus we can differentiate μ_{Γ} with respect to μ_{Σ} to obtain

$$
|\delta \Sigma(\mathrm{X})| \leqq \frac{3}{\lambda_{\Sigma}} c(\mathrm{~W}) \int|\mathrm{X}| d \mu_{\Sigma}
$$

for any $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~W} ; \mathbb{R}^{n+k}\right)$, which in turn implies the result.

2.6. Remark

(1) Since $\Sigma=\partial T$ in $U \sim \operatorname{spt} \Gamma$ and $\Sigma=-\Gamma$ in $U \sim \operatorname{spt} \partial T$ we have $\left|H_{\Sigma}(x)\right| \leqq 1 / \lambda_{\Sigma}$ for μ_{Σ}-a. e. $x \in U \sim(\operatorname{spt} \Gamma \cap \operatorname{spt} \partial T)$.
(2) One easily checks that (A3) holds (with $\beta=1$) in case Γ locally corresponds to an oriented embedded $\mathrm{C}^{0,1}$-submanifold of \mathbb{R}^{n+k} with multiplicity m_{Γ}.

2.7. Proposition

Let $\mathrm{T} \in \mathrm{I}_{n, \text { loc }}(\mathrm{U})$ be a minimizer of the thread problem with respect to Γ satisfying (A1) and assume now that $\mathrm{U} \subset \mathbb{R}^{n+1}$.
Suppose x_{0} is a regular point of $\operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma$ and $\rho<\operatorname{dist}\left(x_{0}, \operatorname{spt} \partial \Gamma\right)$ such that

$$
\begin{gathered}
\Gamma\left\llcorner\mathbf{B}_{\boldsymbol{\rho}}\left(x_{0}\right)=m_{\Gamma} \llbracket \mathbf{M}_{\Sigma} \cap \mathbf{B}_{\rho}\left(x_{0}\right) \rrbracket, m_{\Gamma} \in \mathbb{Z}^{+} \cup\{0\}\right. \\
\partial \mathbf{T}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)=m_{\partial \mathbf{T}} \llbracket \mathbf{M}_{\Sigma} \cap \mathbf{B}_{\rho}\left(x_{0}\right) \rrbracket, m_{\partial \mathbf{T}} \in \mathbb{Z} \sim\left\{m_{\Gamma}\right\}\right.
\end{gathered}
$$

where M_{Σ} is an ($n-1$)-dimensional embedded, oriented C^{1}-submanifold of \mathbb{R}^{n+1}.
(1) If $m_{\partial \mathrm{T}} \notin\left[0, m_{\Gamma}\right] \mathbf{M}_{\Sigma}$ is actually of class C^{∞} and (for some smaller $\rho>0)$

$$
\begin{equation*}
\mathrm{T} L \mathrm{~B}_{\mathrm{p}}\left(x_{0}\right)=m_{\partial \mathbf{T}} \llbracket \mathbf{M}_{\mathbf{T}} \cap \mathbf{B}_{\mathbf{\rho}}\left(x_{0}\right) \rrbracket+m_{0} \llbracket \mathbf{M}_{0} \cap \mathbf{B}_{\mathrm{\rho}}\left(x_{0}\right) \rrbracket \tag{2.29}
\end{equation*}
$$

where M_{T} is an oriented embedded minimal hypersurface of \mathbb{R}^{n+1} with boundary $\mathrm{M}_{\Sigma}, m_{0}$ is a nonnegative integer and \mathbf{M}_{0} is an oriented, embedded real-analytic minimal hypersurface without boundary which contains $\mathbf{M}_{\mathbf{T}}$.
Moreover, the mean curvature vector \mathbf{H}_{Σ} of M satisfies $\left|\mathbf{H}_{\Sigma}\right|=1 / \lambda_{\Sigma}\left(\lambda_{\Sigma}\right.$ is the Lagrange multiplier of Theorem 2.3). In fact we have

$$
\begin{equation*}
\int_{\mathrm{M}_{\Sigma}} \operatorname{div}_{\mathrm{M}_{\Sigma}} \mathrm{X} d \mathscr{H}^{n-1}=-\frac{1}{\lambda_{\Sigma}} \int_{\mathrm{M}_{\Sigma}} v_{\partial \mathrm{T}} \cdot \mathrm{X} d \mathscr{H}^{n-1} \tag{2.30}
\end{equation*}
$$

for all $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\rho}\left(x_{0}\right) ; \mathbb{R}^{n+1}\right)$, where $v_{\partial \mathrm{T}}$ is the outer unit normal vector of \mathbf{M}_{Σ} with respect to $\mathbf{M}_{\mathbf{T}}$.

Note in particular that all regular parts of Σ have the same constant mean curvature.
(2) If $0 \leqq m_{\partial \mathrm{T}}<m_{\Gamma}$ and condition (A2) of Theorem (2.3) holds in $\mathbf{U} \sim \overline{\mathbf{B}_{\mathrm{\rho}}\left(x_{0}\right)}, \mathbf{M}_{\Sigma}$ is of class $\mathbf{C}^{1, \alpha}$ for any $\alpha<1$ and the generalized mean curvature vector H_{Σ} of M_{Σ} satisfies $\left|H_{\Sigma}\right| \leqq \frac{1}{\lambda_{\Sigma}}$.
(3) If M_{Σ} is stationary, i.e. when (A1) is not satisfied T may be supported by several distinct sheets of smooth surfaces with boundary \mathbf{M}_{Σ}.

Proof. - Suppose first of all that $x_{0} \in \operatorname{spt} \Sigma \sim \operatorname{spt} \Gamma$. In this case we may assume $m_{\partial \mathrm{T}}=m_{\Sigma}>0$ and

$$
\Sigma\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)=m_{\Sigma} \llbracket \mathbf{M}_{\Sigma} \cap \mathbf{B}_{\rho}\left(x_{0}\right) \rrbracket .\right.
$$

From the local decomposition theorem in [WB] we infer

$$
\begin{gather*}
\mathrm{T}\left\llcorner\mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right)=\sum_{i=1}^{m_{\Sigma}} \mathrm{T}_{i}\left\llcorner\mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right)\right.\right. \\
\mathbf{M}\left(\mathrm{T}\left\llcorner\mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right)\right)=\sum_{i=1}^{m_{\Sigma}} \mathbf{M}\left(\mathrm{T}_{i}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)\right.\right. \tag{2.31}
\end{gather*}
$$

where each T_{i} satisfies $\partial \mathrm{T}_{i}=\frac{1}{m_{\Sigma}} \Sigma$.
We want to show that $x_{0} \in \operatorname{spt} \delta \mathrm{~T}_{i}$ for every $1 \leqq i \leqq m_{\Sigma}$. Since $\partial \mathrm{T}_{i}=\frac{1}{m_{\Sigma}} \Sigma$ and (2.31) holds we can obviously apply Proposition 1.7 (2) again to derive that each $\mathrm{T}_{i}\left\llcorner B_{\rho}\left(x_{0}\right)\right.$ is a minimizer of the thread problem (in $\mathrm{B}_{\mathrm{p} / 2}\left(x_{0}\right)$ say) with respect to $\Gamma=0$.

If $x_{0} \notin \operatorname{spt} \delta \mathrm{~T}_{i}$ we can find a radius $\sigma>0$ such that $\mathrm{T}_{i}\left\llcorner\mathrm{~B}_{\sigma}\left(x_{0}\right)\right.$ is stationary. Hence the usual monotonicity formula holds for T_{i} at x_{0} (cf. [SL], Chapt. 4). This and the fact that $\partial \mathrm{T}$ is regular in a neighbourhood of x_{0} yields for small enough $\sigma>0$

$$
\frac{\mathbf{M}\left(\mathrm{T}_{i}\left\llcorner\mathbf{B}_{\sigma}\left(x_{0}\right)\right)\right.}{\sigma^{n}}+\frac{\mathbf{M}\left(\partial \mathrm{T}_{i}\left\llcorner\mathbf{B}_{\sigma}\left(x_{0}\right)\right)\right.}{\sigma^{n-1}} \leqq c
$$

where c is independent of σ.
The fact that T_{i} locally minimizes mass in the ordinary sense with respect to $\partial \mathrm{T}_{i}$ and the compactness theorem for mass-minimizing currents ([SL], Chapt. 7), then imply the existence of a mass-minimizing tangent
cone C_{i} at x_{0}. Obviously $\partial C_{i}=\llbracket T_{x_{0}} \mathbf{M}_{\Sigma} \rrbracket$, where $T_{x_{0}} \mathbf{M}_{\Sigma}$ denotes the oriented tangent space of M_{Σ} at x_{0}. By ([HS], Chapt. 11) C_{i} has to be the sum of an oriented n-dimensional halfplane of multiplicity one and possibly a hyperplane of arbitrary multiplicity containing this halfplane. Hence $\delta C_{i} \neq 0$.

On the other hand the lower-semicontinuity of the first variation with respect to varifold-convergence and the fact that T_{i} was assumed to be stationary in $\mathrm{B}_{\sigma}\left(x_{0}\right)$ implies the stationarity of C_{i} and thus leads to a contradiction. Hence we conclude $x_{0} \in \operatorname{spt} \delta \mathrm{~T}_{i}$.

Because each T_{i} satisfies (A2) and since (A1) holds T we may now apply Theorem 2.3, in particular (2.8) with T_{0} replaced by T_{i}, to deduce

$$
\begin{equation*}
\delta \mathrm{T}_{i}(\mathrm{X})+\frac{\lambda_{\Sigma}}{m_{\Sigma}} \delta \Sigma(\mathrm{X})=0, \quad 1 \leqq i \leqq m_{\Sigma} \tag{2.32}
\end{equation*}
$$

for every $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right) ; \mathbb{R}^{n+1}\right)$ (ρ slightly smaller than above).
Combining (2.10) and (2.32) we obtain

$$
\begin{equation*}
\delta \Sigma(\mathrm{X})=-\frac{1}{\lambda_{\Sigma}} \int v_{\partial \mathrm{T}_{i}} \cdot \mathrm{X} d \mu_{\Sigma}, \quad 1 \leqq i \leqq m_{\Sigma} \tag{2.33}
\end{equation*}
$$

for all $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right) ; \mathbb{R}^{n+1}\right)$, where the $v_{\hat{\partial} \mathrm{T}_{i}}$ are \mathscr{H}^{n-1}-measurable and satisfy $\left|v_{\partial \mathrm{T}_{i}}\right| \leqq 1 \mathscr{H}^{n-1}$-a. e. Standard regularity theory for C^{1}-solutions of the prescribed mean curvature system implies that $\mathbf{M}_{\boldsymbol{\Sigma}} \cap \mathbf{B}_{\rho}\left(x_{0}\right)$ is of class $\mathrm{C}^{1, \alpha}$ for any $\alpha<1$ (and smaller radius $\rho>0$). The boundary regularity theory for mass-minimizing currents (cf. [HS]) then yields (again for some smaller $\rho>0$) that either

$$
\mathrm{T}\left\llcorner\mathbf{B}_{\mathrm{\rho}}\left(x_{0}\right)=m_{\Sigma} \llbracket \mathbf{M}_{\mathbf{T}} \cap \mathbf{B}_{\rho}\left(x_{0}\right) \rrbracket+m_{0} \llbracket \mathbf{M}_{0} \cap \mathbf{B}_{\rho}\left(x_{0}\right) \rrbracket\right.
$$

where M_{0} is an oriented, embedded real analytic minimal hypersurface without boundary which contains \mathbf{M}_{T} and m_{0} is a nonnegative integer, (M_{T} like the $\mathrm{M}_{\mathrm{T}_{i}}$ below) or

$$
\mathrm{T}_{i}\left\llcorner\mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right)=\llbracket \mathbf{M}_{\mathbf{T}_{i}} \cap \mathbf{B}_{\rho}\left(x_{0}\right) \rrbracket, \quad 1 \leqq i \leqq m_{\Sigma}\right.
$$

where each $\mathbf{M}_{\mathrm{T}_{i}}$ is an oriented, embedded minimal $\mathbf{C}^{\mathbf{1 , \alpha}}$-hypersurface with boundary \mathbf{M}_{Σ}.
In both cases the representation vector $v_{\partial \mathrm{T}_{i}}$ for $\delta \Sigma$ in (2.33) is given by the exterior normal of $\mathbf{M}_{\boldsymbol{\Sigma}}$ with respect to $\mathbf{M}_{\mathbf{T}}$ and $\mathbf{M}_{\mathbf{T}_{i}}$, and is of class $\mathrm{C}^{0, \lambda}$. We furthermore deduce from (2.33) that $v_{\partial \mathrm{T}_{i}}=v_{\partial \mathrm{I}_{j}}$ for $i \neq j$ which by virtue of the Hopf-boundary point lemma for minimal surfaces implies $\mathrm{M}_{\mathrm{T}_{i}}=\mathrm{M}_{\mathrm{T}_{j}}$ for $i \neq j$.

Moreover standard regularity theory implies $\mathbf{M}_{\boldsymbol{\Sigma}} \cap \mathbf{B}_{\boldsymbol{\rho}}\left(x_{0}\right) \in \mathrm{C}^{\mathbf{2 , \alpha}}$. A standard "boot-strapping" argument then leads to the \mathbf{C}^{∞}-regularity of \mathbf{M}_{Σ}.

Since the above line of argument is applicable at every point in $\mathbf{M}_{\Sigma} \cap \mathbf{B}_{\rho}\left(x_{0}\right)$ (for the original radius $\rho>0$) our conclusion also holds for the original ball $\mathrm{B}_{\mathrm{\rho}}\left(x_{0}\right)$.

Let us now assume $x_{0} \in \operatorname{spt} \Gamma$ and $m_{\Gamma} \geqq 1$. Suppose $m_{\partial T} \notin\left[0, m_{\Gamma}\right)$. (If $m_{\partial \mathrm{T}}=m_{\Gamma}, \Sigma\left\llcorner\mathrm{B}_{\mathrm{\rho}}\left(x_{0}\right)=0\right.$.) We again decompose

$$
\mathrm{T}\left\llcorner\mathrm{~B}_{\rho}\left(x_{0}\right)=\sum_{i=1}^{\left|m_{\partial \mathrm{T}}\right|} \mathrm{T}_{i}\left\llcorner\mathrm{~B}_{\rho}\left(x_{0}\right)\right.\right.
$$

where the $T_{i}\left\llcorner\mathbf{B}_{\mathrm{p}}\left(x_{0}\right)\right.$ are additive in mass and satisfy

$$
\partial \mathrm{T}_{i}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)=\frac{m_{\partial \mathrm{T}}}{\left|m_{\partial \mathrm{T}}\right|} \llbracket \mathbf{M}_{\Sigma} \cap \mathbf{B}_{\rho}\left(x_{0}\right) \rrbracket, \quad 1 \leqq i \leqq m_{\Sigma}\right.
$$

One easily checks that for $1 \leqq i \leqq\left|m_{\partial \mathrm{T}}\right|$ and $\Sigma_{i}=\partial \mathrm{T}_{i}$

$$
\mathbf{M}\left(\Sigma\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)=\mathbf{M}\left(\Sigma_{i}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)+\mathbf{M}\left(\left(\Sigma-\Sigma_{i}\right)\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right) .\right.\right.\right.
$$

Thus, as above, each $T_{i} L B_{\rho}\left(x_{0}\right)$ is [in view of Prop. 1.7 (2)] a minimizer of the thread problem in $\mathbf{B}_{\rho}\left(x_{0}\right)$ with respect to $\Gamma=0$. [In case $m_{\partial \mathrm{T}}<0$ even T minimizes the thread problem in $\mathrm{B}_{\rho}\left(x_{0}\right)$ with respect to $\Gamma=0$ since then $\mathbf{M}\left(\Sigma\left\llcorner\mathbf{B}_{\boldsymbol{\rho}}\left(x_{0}\right)\right)=\mathbf{M}\left(\partial \mathbf{T}\left\llcorner\mathbf{B}_{\mathbf{\rho}}\left(x_{0}\right)\right)+\mathbf{M}\left(\Gamma\left\llcorner\mathbf{B}_{\mathbf{\rho}}\left(x_{0}\right)\right)\right.\right.\right.$.] As before we show $x_{0} \in \operatorname{spt} \delta \mathrm{~T}_{i}, 1 \leqq i \leqq\left|m_{\partial \mathrm{T}}\right|$ which again enables us to apply (2.8) in order to deduce

$$
\delta \mathrm{T}_{i}(\mathrm{X}) \pm \lambda_{\Sigma} \delta \llbracket \mathrm{M}_{\Sigma} \rrbracket(\mathrm{X})=0, \quad 1 \leqq i \leqq\left|m_{\partial \mathrm{T}}\right|
$$

depending on whether $m_{\partial T}$ is positive or negative. As this identity corresponds to (2.32) the same argument as before can be applied.

It remains to discuss the case where $0 \leqq m_{\partial \mathrm{T}}<m_{\Gamma}$. Define

$$
\begin{gathered}
\mathrm{T}^{\prime}=\mathrm{T}-\mathrm{T}\left\llcorner\mathrm{~B}_{\sigma}\left(x_{0}\right)\right. \\
\Gamma^{\prime}=\Gamma-\Gamma\left\llcorner\mathrm{B}_{\sigma}\left(x_{0}\right)\right. \\
\mathrm{U}^{\prime}=\left(\mathrm{U} \sim \overline{\left.\mathrm{~B}_{\sigma}\left(x_{0}\right)\right)} \cup \mathrm{B}_{\sigma / 2}\left(x_{0}\right)\right.
\end{gathered}
$$

where $\sigma \leqq \rho$ is chosen such that the assumptions (A1) and (A2) still hold in $\mathrm{U}^{\prime}\left[(\mathrm{A} 2)\right.$ was assumed to be valid in $\left.\mathrm{U} \sim \overline{\mathbf{B}_{\rho}\left(x_{0}\right)}\right]$. Since $\partial \mathrm{T}^{\prime}=0$ in $\mathrm{B}_{\sigma / 2}\left(x_{0}\right)$ the conditions of Proposition 1.7 (2) are trivially satisfied for T^{\prime} and $\Sigma^{\prime}=\partial \mathrm{T}^{\prime}-\Gamma^{\prime}$. Hence T^{\prime} minimizes the thread problem in U^{\prime} with respect to Γ^{\prime}. Applying (2.7) we conclude

$$
\left|\delta \mathrm{T}^{\prime}(\mathrm{X})+\lambda_{\Sigma} \delta \Sigma^{\prime}(\mathrm{X})\right| \leqq \int\left|\mathbf{X} \wedge \vec{\Gamma}^{\prime}\right| d \mu_{\Gamma^{\prime}}
$$

for every $\mathrm{X} \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathrm{U}^{\prime} \sim \operatorname{spt} \partial \Gamma^{\prime} ; \mathbb{R}^{n+1}\right)$ where $\lambda_{\Sigma}>0$ is determined by

$$
\mathrm{T}^{\prime}\left\llcorner\left(\mathrm{U}^{\prime} \sim \overline{\mathrm{B}_{\mathrm{p}}\left(x_{0}\right)}\right)=\mathrm{T}\left\llcorner\left(\mathrm{U} \sim \overline{\mathrm{~B}_{\mathrm{p}}\left(x_{0}\right)}\right) .\right.\right.
$$

Since $\Sigma^{\prime}\left\llcorner B_{\sigma}\left(x_{0}\right)=-\Gamma^{\prime}\left\llcorner B_{\sigma}\left(x_{0}\right)\right.\right.$ and $T^{\prime}\left\llcorner B_{\sigma}\left(x_{0}\right)=0\right.$ we obtain

$$
\left|\int \operatorname{div}_{M_{\Sigma}} \mathrm{X} d \mathscr{H}^{n-1}\right| \leqq \frac{1}{\lambda_{\Sigma}} \int|\mathrm{X}| d \mathscr{H}^{n-1}
$$

for all $\mathrm{X} \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathrm{~B}_{\sigma}\left(x_{0}\right) ; \mathbb{R}^{n+1}\right)$.
The above argument works for every point in $\mathbf{M}_{\Sigma} \cap B_{\rho}\left(x_{0}\right)$ with λ_{Σ} being determined by $\mathrm{T} L\left(\mathrm{U} \sim \overline{\mathbf{B}_{\mathrm{\rho}}\left(x_{0}\right)}\right)$. This completes the proof.

In view of Proposition 2.7 (2) we define the set along which the thread Σ "sticks" to the wire Γ by

2.8. Definition

$$
\mathrm{S}_{\Gamma}=\{x \in \operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma / \exists \rho \in(0, \operatorname{dist}(x, \operatorname{spt} \partial \Gamma))
$$

and

$$
c \in[0,1) \text { s.t. } \partial \mathrm{T}\left\llcorner\mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right)=c\left(\Gamma\left\llcorner\mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right)\right)\right\} .\right.
$$

We are going to show that unless Σ is stationary away from its boundary the first variation of Σ does not vanish at all, except possibly along S_{Γ}.

2.9. Corollary

Let $\mathrm{T} \in \mathrm{I}_{n, \text { loc }}(\mathrm{U})$ be a minimizer of the thread problem with respect to $\Gamma \in \mathrm{I}_{n-1, \text { loc }}(\mathrm{U})$, where $\mathrm{U} \subset \mathbb{R}^{n+1}$.

Suppose reg Γ is dense in spt Γ.
(1) If (A1) of Theorem 2.3 is satisfied we have

$$
\begin{equation*}
\operatorname{spt} \Sigma \sim\left(\mathrm{S}_{\Gamma} \cup \operatorname{spt} \partial \Gamma\right) \subset \operatorname{spt} \delta \Sigma \tag{2.34}
\end{equation*}
$$

(2) If additionally (A2) and (A3) hold we have

$$
\begin{equation*}
\operatorname{spt} \Sigma \sim\left(\mathrm{S}_{\Gamma} \cup \operatorname{spt} \partial \Gamma\right) \subset \operatorname{spt} \delta \mathrm{T} \tag{2.35}
\end{equation*}
$$

Proof. - (1) Let $x_{0} \in \operatorname{spt} \Sigma \sim\left(\mathrm{~S}_{\Gamma} \cup \operatorname{spt} \partial \Gamma\right)$ and suppose there exists a $\rho<\operatorname{dist}\left(x_{0}, \operatorname{spt} \partial \Gamma\right)$ such that

$$
\delta \Sigma(\mathrm{X})=0, \quad \forall \mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\mathrm{p}}\left(x_{0}\right) ; \mathbb{R}^{n+1}\right)
$$

where we may assume that $\rho<\operatorname{dist}\left(x_{0}, S_{\Gamma}\right)$. From Allard's regularity theorem ([AW], [SL], Chapt. 5) we see that inside $\mathrm{B}_{\mathrm{p}}\left(x_{0}\right)$ the set reg Σ is dense in spt Σ. Using this and the assumption on reg Γ we may assume
without loss of generality that

$$
\begin{gathered}
\partial \mathrm{T}\left\llcorner\mathbf{B}_{\boldsymbol{\rho}}\left(x_{0}\right)=m_{\partial \mathrm{T}} \llbracket \mathbf{M}_{\Sigma} \cap \mathbf{B}_{\mathbf{\rho}}\left(x_{0}\right) \rrbracket\right. \\
\Gamma\left\llcorner\mathbf{B}_{\mathbf{\rho}}\left(x_{0}\right)=m_{\Gamma} \llbracket \mathbf{M}_{\Sigma} \cap \mathbf{B}_{\boldsymbol{\rho}}\left(x_{0}\right) \rrbracket, \quad m_{\Gamma} \in \mathbb{Z}^{+} \cup\{0\}\right.
\end{gathered}
$$

where $m_{\partial \mathrm{T}} \notin\left[0, m_{\Gamma}\right.$) since $x_{0} \notin \mathrm{~S}_{\Gamma} . \mathrm{M}_{\Sigma}$ is a real-analytic ($n-1$)-dimensional oriented embedded minimal submanifold of \mathbb{R}^{n+1}.

On the other hand we obtain, using (A1) and Proposition 2.7 (1), that \mathbf{M}_{Σ} has nonzero constant mean curvature, which is a contradiction.
(2) Suppose $x_{0} \in \operatorname{spt} \Sigma \sim\left(\mathrm{~S}_{\Gamma} \cup \operatorname{spt} \partial \Gamma\right)$ and there exists a $\rho<\operatorname{dist}\left(x_{0}\right.$, spt $\left.\partial \Gamma \cup S_{\Gamma}\right)$ such that

$$
\begin{equation*}
\delta \mathrm{T}(\mathrm{X})=0, \quad \forall \mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\mathrm{p}}\left(x_{0}\right) ; \mathbb{R}^{n+1}\right) \tag{2.34}
\end{equation*}
$$

Since (A1), (A2) and (A3) hold, we can apply Corollary 2.5 to deduce that the generalized mean curvature of Σ is bounded in every open set $\mathrm{W} \Subset \mathrm{U} \sim \operatorname{spt} \partial \Gamma$. Using again Allard's theorem we obtain that inside $\mathbf{B}_{\mathbf{\rho}}\left(x_{0}\right)$ the set reg Σ must be dense in spt Σ. In view of the additional assumption reg $\Gamma=\operatorname{spt} \Gamma$ we may proceed as in part (1) of the proof. Proposition 2.7 (1) [in particular (2.29)] and the divergence theorem for regular minimal submanifolds with boundary then imply $\delta \mathbf{T}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right) \neq 0\right.$ thus contradicting (2.34).

2.10. Corollary

Let $\mathrm{T} \in \mathrm{I}_{n, \text { loc }}(\mathrm{U})$ be a minimizer of the thread problem with respect to $\Gamma \in I_{n-1, \text { loc }}(\mathrm{U})$, where $\mathrm{U} \subset \mathbb{R}^{n+1}$.

Suppose condition (A1) is not satisfied, that is we have

$$
\begin{equation*}
\delta \Sigma(\mathrm{X})=0, \quad \forall \mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{U} \sim \operatorname{spt} \partial \Gamma ; \mathbb{R}^{n+1}\right) \tag{2.35}
\end{equation*}
$$

In case $\operatorname{spt} \Sigma \subset \operatorname{spt} \Gamma$ we furthermore assume that $(\mathrm{reg} \Gamma \cap \operatorname{spt} \Sigma) \sim \mathrm{S}_{\Gamma} \neq \varnothing$.
Suppose we have the following local decomposition of Σ : Let $x_{0} \in \operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma, \rho<\operatorname{dist}\left(x_{0}, \operatorname{spt} \partial \Gamma\right)$ and $\Sigma_{0} \in \mathrm{I}_{n-1, \text { loc }}(\mathrm{U})$ satisfy

$$
\begin{align*}
\Sigma\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)=\right. & \Sigma_{0}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)+\left(\Sigma-\Sigma_{0}\right)\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right) .\right.\right. \\
\mathbf{M}\left(\Sigma\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)=\right. & \mathbf{M}\left(\Sigma_{0}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)+\mathbf{M}\left(\left(\Sigma-\Sigma_{0}\right)\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)\right.\right. \tag{2.36}\\
& \partial \Sigma_{0}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)=0\right.
\end{align*}
$$

Then

$$
\begin{equation*}
\delta \Sigma_{0}(\mathrm{X})=0, \quad \forall \mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\mathrm{p}}\left(x_{0}\right) ; \mathbb{R}^{n+1}\right) \tag{2.37}
\end{equation*}
$$

Proof. - Let us suppose $x_{0} \in \operatorname{spt} \delta \Sigma_{0}$.

If $\operatorname{spt} \Sigma \sim \operatorname{spt} \Gamma \neq \varnothing$ we can choose (by Allard's theorem) a point $x_{1} \in \operatorname{reg} \Sigma \sim \operatorname{spt} \Gamma$ and $\sigma<\operatorname{dist}\left(x_{1}, \operatorname{spt} \Gamma\right)$ such that

$$
\begin{equation*}
\Sigma\left\llcorner\mathbf{B}_{\sigma}\left(x_{1}\right)=m_{\Sigma} \llbracket \mathbf{M}_{\Sigma} \cap \mathbf{B}_{\sigma}\left(x_{1}\right) \rrbracket\right. \tag{2.38}
\end{equation*}
$$

where \mathbf{M}_{Σ} is an ($n-1$)-dimensional oriented, embedded real analytic minimal submanifold of \mathbb{R}^{n+1}.
If $\quad \mathrm{spt} \quad \Sigma \subset \mathrm{spt} \Gamma \quad$ we \quad select $\quad x_{1} \in(\operatorname{reg} \Gamma \cap \mathrm{spt} \Sigma) \sim \mathrm{S}_{\Gamma} \quad$ and $\sigma<\operatorname{dist}\left(x_{1}, \operatorname{spt} \partial \Gamma \cup S_{\Gamma}\right)$. Again by Allard's theorem we may assume $x_{1} \in \operatorname{reg} \Sigma$ such that

$$
\begin{gather*}
\partial \mathbf{T L} \mathbf{B}_{\sigma}\left(x_{1}\right)=m_{\partial \mathbf{T}} \llbracket \mathbf{M}_{\Sigma} \cap \mathbf{B}_{\sigma}\left(x_{1}\right) \rrbracket \\
\Gamma\left\llcorner\mathbf{B}_{\sigma}\left(x_{1}\right)=m_{\Gamma} \llbracket \mathbf{M}_{\Sigma} \cap \mathbf{B}_{\sigma}\left(x_{1}\right) \rrbracket, m_{\Gamma} \in \mathbb{Z}^{+} \cup\{0\}\right. \tag{2.39}
\end{gather*}
$$

where $m_{\partial \mathrm{T}} \notin\left[0, m_{\Gamma}\right)$ and \mathbf{M}_{Σ} is as in (2.38). [(2.38) is a special case of (2.39).] We may also assume $x_{1} \neq x_{0}$ and choose σ, ρ s. t. $\mathrm{B}_{\mathrm{\rho}}\left(x_{0}\right) \cap \mathrm{B}_{\sigma}\left(x_{1}\right)=\varnothing$. (Note that $x_{1} \in \operatorname{spt} \delta \Sigma_{0}$ would imply $x_{1} \notin \operatorname{reg} \Sigma$.)

Define

$$
\begin{gathered}
\Gamma^{\prime}=\Gamma+\left(\Sigma-\Sigma_{0}\right)\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right. \\
\Sigma^{\prime}=\partial \mathbf{T}-\Gamma^{\prime} .
\end{gathered}
$$

We then have

$$
\begin{align*}
& \Sigma^{\prime}\left\llcorner\mathrm{B}_{\rho}\left(x_{0}\right)=\Sigma \Sigma_{0}\left\llcorner\mathrm{~B}_{\rho}\left(x_{0}\right)\right.\right. \\
& \Sigma^{\prime}\left\llcorner\mathrm{B}_{\sigma}\left(x_{1}\right)=\Sigma\left\llcorner\mathrm{B}_{\sigma}\left(x_{1}\right)\right.\right. \tag{2.40}\\
& \Gamma^{\prime}\left\llcorner\mathrm{B}_{\sigma}\left(x_{1}\right)=\Gamma\left\llcorner\mathrm{B}_{\sigma}\left(x_{1}\right) .\right.\right.
\end{align*}
$$

Using (2.36) and Proposition 1.7 (1) we conclude that T is a minimizer of the thread problem in $\mathbf{B}_{\rho}\left(x_{0}\right) \cup \mathbf{B}_{\sigma}\left(x_{1}\right)$ with respect to Γ^{\prime} as new fixed boundary part. Furthermore (2.40) and the choice of x_{0} imply spt $\delta \Sigma^{\prime} \sim \operatorname{spt} \partial \Gamma^{\prime} \neq \varnothing$. Applying Proposition 2.7 (1) to T in $B_{\sigma}\left(x_{1}\right)$ we derive that \mathbf{M}_{Σ} has nonzero constant mean curvature which gives a contradiction to (2.39).

2.11. Remark

Corollary 2.10 holds in arbitrary codimension if additionally require spt $\delta \mathrm{T} \sim$ spt $\Gamma \neq \varnothing$. Indeed, by virtue of (2.11) we can always find a point $x_{1} \in \operatorname{spt} \delta \mathrm{~T} \sim$ spt Γ different from x_{0}. Let $\mathbf{B}_{\sigma}\left(x_{1}\right)$ and $\mathbf{B}_{\mathrm{p}}\left(x_{0}\right) \cup$ spt Γ be disjoint. As in the proof of Corollary 2.10 T minimizes the thread problem in $B_{\rho}\left(x_{0}\right) \cup B_{\sigma}\left(x_{1}\right)$ with respect to Γ^{\prime}, where now $\Gamma^{\prime} L B_{\sigma}\left(x_{1}\right)=0$. Let $\mathrm{X}_{0} \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathrm{~B}_{\rho}\left(x_{0}\right) ; \mathbb{R}^{n+k}\right)$ satisfy $\delta \Sigma_{0}\left(\mathrm{X}_{0}\right) \neq 0$. From (2.1) applied to T and
Σ^{\prime} in $B_{\rho}\left(x_{0}\right) \cup B_{\sigma}\left(x_{1}\right)$ we then infer [in view of (2.40) and $\Gamma^{\prime}\left\llcorner B_{\sigma}\left(x_{1}\right)=0\right.$]

$$
\left|\delta \mathrm{T}(\mathrm{X}) \delta \Sigma_{0}\left(\mathrm{X}_{0}\right)-\delta \mathrm{T}\left(\mathrm{X}_{0}\right) \delta \Sigma(\mathrm{X})\right| \leqq|\delta \Sigma(\mathrm{X})| \int\left|\mathrm{X}_{0} \Lambda \vec{\Gamma}\right| d \mu_{\Gamma}
$$

for every $\mathrm{X} \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathrm{~B}_{\sigma}\left(x_{1}\right) ; \mathbb{R}^{n+k}\right)$. The stationarity of Σ in $\mathrm{B}_{\sigma}\left(x_{1}\right)$ and the fact that $\delta \Sigma_{0}\left(\mathrm{X}_{0}\right) \neq 0$ contradict the choice of $x_{1} \in \operatorname{spt} \delta \mathrm{~T}$.

The next Corollary of Theorem 2.3 is valid for arbitrary codimension.

2.12. Corollary

Let $T \in \mathrm{I}_{n \text {, loc }}(\mathrm{U})$ satisfy the assumptions of Theorem 2.3. Suppose $\Sigma\left\llcorner\mathrm{B}_{\mathrm{\rho}}\left(x_{0}\right)\right.$ decomposes as in (2.36) with Σ_{0} satisfying $\delta \Sigma_{0}\left\llcorner\mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right) \neq 0\right.$.

Then for $\Gamma_{0}=\Gamma+\Sigma-\Sigma_{0}$ the inequality

$$
\begin{equation*}
\left|\delta T(X)+\lambda_{\Sigma} \delta \Sigma_{0}(\mathrm{X})\right| \leqq \int\left|\mathrm{X} \Lambda \vec{\Gamma}_{0}\right| d \mu_{\Gamma_{0}} \tag{2.41}
\end{equation*}
$$

holds for every $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\mathrm{p}}\left(x_{0}\right) ; \mathbb{R}^{n+k}\right)$ where λ_{Σ} is the Lagrange multiplier of Theorem 2.3.

If we additionally assume (A3) (2.41) implies that the generalized mean curvature vector $\mathrm{H}_{\Sigma_{0}}$ of Σ_{0} satisfies

$$
\begin{equation*}
\left|H_{\Sigma_{0}}\right| \leqq \frac{1}{\lambda_{\Sigma}} c\left(x_{0}, \rho, \Gamma\right), \quad \mu_{\Sigma}-\text { a. e. } \quad \text { in } B_{\rho}\left(x_{0}\right) \tag{2.42}
\end{equation*}
$$

where $c\left(x_{0}, \rho, \Gamma\right)$ depends on x_{0}, ρ and the constant $c\left(\mathrm{~B}_{\rho}\left(x_{0}\right)\right)$ of condition (A3) (2) (see Cor. 2.5).

2.13. Remark

If $U \subset \mathbb{R}^{n+1}$ we can employ Proposition 2.7 to show that $\left\lvert\, H_{\Sigma_{0}}\left\llcorner\operatorname{reg} \Sigma_{0} \left\lvert\, \leqq \frac{1}{\lambda_{\Sigma}}\right.\right.$. Here "regular" refers to the parts of Σ_{0} where $\partial \mathrm{T}$ is \right. also regular (as in Prop. 2.7).

Proof of Corollary 2.12. - Taking (2.11) into account we can find a point x_{1} different from x_{0} such that (A2) holds at x_{1}. We assumed that

$$
\begin{equation*}
\delta \Sigma_{0}\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right) \neq 0 .\right. \tag{2.43}
\end{equation*}
$$

We now choose $\sigma \in\left(0, \operatorname{dist}\left(x_{1}\right.\right.$, spt $\left.\partial \Gamma\right)$) such that $B_{\sigma}\left(x_{1}\right) \cap B_{\rho}\left(x_{0}\right)=\varnothing$. Let Γ^{\prime} and Σ^{\prime} be defined as in the proof of Corollary 2.10. T then minimizes the thread problem in $\mathrm{B}_{\sigma}\left(x_{1}\right) \cup \mathrm{B}_{\mathrm{p}}\left(x_{0}\right)$ with respect to Γ^{\prime} and $\Sigma^{\prime}=\tilde{c} \mathrm{~T}-\Gamma^{\prime}$.

Furthermore (A1) and (A2) hold in $\mathrm{B}_{\mathrm{\sigma}}\left(x_{1}\right) \cup \mathrm{B}_{\mathrm{\rho}}\left(x_{0}\right)$ [due to assumption (2.43), the choice of x_{1} and the definition of $\left.\Sigma^{\prime}\right]$. Theorem 2.3 then yields

$$
\left|\delta T(X)+\lambda_{\Sigma} \delta \Sigma^{\prime}(\mathrm{X})\right| \leqq \int\left|\mathrm{X} \wedge \vec{\Gamma}^{\prime}\right| d \mu_{\mathrm{r}^{\prime}}
$$

for every $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right) \cup \mathrm{B}_{\sigma}\left(x_{1}\right) ; \mathbb{R}^{n+k}\right)$ which reduces to

$$
\left|\delta T(X)+\lambda_{\Sigma} \delta \Sigma_{0}(X)\right| \leqq \int\left|X \wedge \vec{\Gamma}_{0}\right| d \mu_{\Gamma_{0}}
$$

for every $\mathrm{X} \in \mathrm{C}_{\mathrm{c}}^{1}\left(\mathrm{~B}_{\rho}\left(x_{0}\right) ; \mathbb{R}^{n+k}\right)$.
Let us now assume that Γ satisfies assumption (A3). From Corollary 2.5 we infer

$$
\mid \mathrm{H}_{\Sigma}\left\llcorner\mathbf{B}_{\rho}(x) \mid \leqq c\left(x_{0}, \rho, \Gamma\right), \quad \mu_{\Sigma} \text {-a.e. in } \mathbf{B}_{\rho}\left(x_{0}\right) .\right.
$$

[We denote all constants depending on x_{0}, ρ, Γ by $c\left(x_{0}, \rho, \Gamma\right)$.] Hence we can use the monotonicity formula [for $\Sigma\left\llcorner\mathbf{B}_{\mathrm{\rho}}\left(x_{0}\right)\right.$] and ([SL], 17.9) to verify that Σ satisfies (A3) (with $\beta=1$) in $\mathbf{B}_{\boldsymbol{\rho}}\left(x_{0}\right)$. Applying the same argument as in the proof of Corollary 2.5 we derive
$\mu_{\Sigma}\left(\mathbf{B}_{\mathrm{\rho}}\left(x_{0}\right) \cap \operatorname{spt} \Sigma_{0} \cap \mathbf{W}\right) \leqq c\left(x_{0}, \rho, \Gamma\right) \mu_{\Sigma_{0}}\left(\mathbf{B}_{\mathrm{\rho}}\left(x_{0}\right) \cap \mathbf{W}\right), \quad \forall \mathbf{W} \subset \mathbf{B}_{\mathrm{\rho}}\left(x_{0}\right)$
(using the definition of $\mu_{\Sigma}, \mu_{\Sigma_{0}}$ and the fact that the monotonicity formula for Σ yields $\theta_{\Sigma} \leqq c\left(x_{0}, \rho, \Gamma\right) \mathscr{H}^{n-1}$-a. e. in $\left.\mathbf{B}_{\rho}\left(x_{0}\right)\right)$. Similarly we obtain in view of $\mu_{\Gamma_{0}} \leqq \mu_{\Gamma}+\mu_{\Sigma}+\mu_{\Sigma_{0}}$

$$
\begin{aligned}
\mu_{\Gamma_{0}}\left(\mathbf{B}_{\rho}\left(x_{0}\right) \cap \operatorname{spt}\right. & \left.\Sigma_{0} \cap \mathbf{W}\right) \\
& \leqq c\left(x_{0}, \rho, \Gamma\right) \mu_{\Sigma}\left(\mathbf{B}_{\rho}\left(x_{0}\right) \cap \operatorname{spt} \Sigma_{0} \cap \mathbf{W}\right)+\mu_{\Sigma_{0}}\left(\mathbf{B}_{\rho}\left(x_{0}\right) \cap \mathbf{W}\right)
\end{aligned}
$$

for every $\mathbf{W} \subset \mathbf{B}_{\rho}\left(x_{0}\right)$.
Altogether we conclude
$\mu_{\Gamma_{0}}\left(\mathrm{~B}_{\mathrm{p}}\left(x_{0}\right) \cap \mathrm{spt} \Sigma_{\mathrm{o}} \cap \mathbf{W}\right)$

$$
\leqq c\left(x_{0}, \rho, \Gamma\right) \mu_{\Sigma_{0}}\left(\mathbf{B}_{\mathrm{\rho}}\left(x_{0}\right) \cap \mathrm{W}\right), \quad \forall \mathrm{W} \subset \mathbf{B}_{\mathrm{\rho}}\left(x_{0}\right)
$$

which enables us to derive (2.42) from (2.41) as in the proof of Corollary 2.5 by differentiating $\mu_{\Gamma_{0}}$ with respect to $\mu_{\Sigma_{0}}$.

3. PARTIAL REGULARITY FOR THE TWO DIMENSIONAL THREAD PROBLEM

3.1. Theorem

Let $\mathrm{T} \in \mathrm{I}_{2, \text { loc }}(\mathrm{U})$ be a minimizer of the thread problem with respect to $\Gamma \in \mathrm{I}_{1, \mathrm{loc}}(\mathrm{U})$, where $\mathrm{U} \subset \mathbb{R}^{3}$.

Suppose

$$
\delta \Sigma(X)=0
$$

for every $\mathrm{X} \in \mathrm{C}_{c}^{1}\left(\mathrm{U} \sim \operatorname{spt} \partial \Gamma ; \mathbb{R}^{3}\right)$.
In case spt $\Sigma \subset \operatorname{spt} \Gamma$ we furthermore assume

$$
(\operatorname{reg} \Gamma \cap \operatorname{spt} \Sigma) \sim \mathrm{S}_{\Gamma} \neq \varnothing
$$

Then

$$
\begin{equation*}
\operatorname{sing} \Sigma \sim \operatorname{spt} \partial \Gamma=\varnothing \tag{3.1}
\end{equation*}
$$

3.2. Remark

Theorem 3.1. suggests sufficient conditions for assumption (A1) to hold.
In the simplest case (see also [DHL]), for instance if $\Gamma=m_{\Gamma} \llbracket \gamma \rrbracket$ where γ is a rectifiable Jordan arc in \mathbb{R}^{3} with endpoints P_{1} and P_{2} then (A1) is satisfied if we assume

$$
\begin{equation*}
\mathbf{M}(\Sigma)>m_{\Gamma} \operatorname{dist}\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right) . \tag{3.2}
\end{equation*}
$$

Proof of Theorem 3.1. - By exploiting the special structure of one dimensional stationary varifolds ([AA], Chapt. 3) we obtain that for every $x_{0} \in \operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma$ there exists a $\rho<\operatorname{dist}\left(x_{0}, \operatorname{spt} \partial \Gamma\right)$ and a positive integer $\mathrm{N}\left(x_{0}\right)$ such that

$$
\Sigma\left\llcorner\mathrm{B}_{\mathrm{\rho}}\left(x_{0}\right)=\sum_{i=1} m_{i} \llbracket l_{i} \cap \mathbf{B}_{\rho}\left(x_{0}\right) \rrbracket\right.
$$

where $m_{i} \in \mathbb{Z}^{+}$and the l_{i} denote piecewise linear curves through x_{0} (singular only at x_{0}) without endpoints in $\mathrm{B}_{\mathrm{p}}\left(x_{0}\right)$. By virtue of Corollary 2.10, any local decomposition of Σ which does not introduce boundary points consists of stationary components only. Obviously this implies

$$
\Sigma\left\llcorner\mathrm{B}_{\mathrm{p}}\left(x_{0}\right)=m \llbracket l \cap \mathrm{~B}_{\mathrm{p}}\left(x_{0}\right) \rrbracket\right.
$$

where $m \in \mathbb{Z}^{+}$and l is a line through x_{0}.
Thus every connected component of spt Σ has to be a line segment.

3.3. Remark

The Theorem holds for arbitrary codimension if we additionally require $\operatorname{spt} \delta \mathrm{T} \sim \operatorname{spt} \Gamma \neq \varnothing$ (as in Remark 2.11).

3.4. Theorem

Let $\mathrm{T} \in \mathrm{I}_{2, \text { loc }}(\mathrm{U})$ satisfy the assumptions of Corollary 2.5.
Then for every point $x_{0} \in \operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma$ there exists a radius $\rho<\operatorname{dist}\left(x_{0}\right.$, spt $\left.\partial \Gamma\right)$ and a positive integer $\mathrm{N}\left(x_{0}\right)$ such that

$$
\begin{equation*}
\Sigma\left\llcorner\mathrm{B}_{\mathrm{p}}\left(x_{0}\right)=\sum_{i=1}^{\mathrm{N}\left(x_{0}\right)} m_{i} \llbracket \sigma_{i} \cap \mathbf{B}_{\mathrm{p}}\left(x_{0}\right) \rrbracket\right. \tag{3.3}
\end{equation*}
$$

where $m_{i} \in \mathbb{Z}^{+}$and each σ_{i} is an embedded oriented $\mathbb{C}^{1,1}$-curve through x_{0} without endpoints in $\mathrm{B}_{\mathrm{p}}\left(x_{0}\right)$. Moreover all σ_{i} have the same tangent at x_{0}.
Proof. - Let $x_{0} \in \operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma, \rho \in\left(0, \operatorname{dist}\left(x_{0}, \operatorname{spt} \partial \Gamma\right)\right)$. The decomposition theorem of ([FH], 4.2.25) implies

$$
\begin{gather*}
\Sigma\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)=\sum_{i=1}^{\infty} \llbracket \sigma_{i} \cap \mathbf{B}_{\rho}\left(x_{0}\right) \rrbracket\right. \tag{3.4}\\
\mathbf{M}\left(\Sigma\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)=\sum_{i=1}^{\infty} L\left(\sigma_{i} \cap \mathbf{B}_{\rho}\left(x_{0}\right)\right)\right.
\end{gather*}
$$

where each σ_{i} is an embedded Lipschitz curve parametrized by arc length and L denotes the length of a curve.

Corollary 2.12 (in particular 2.42)

$$
\mid \mathbf{H}\left(\sigma_{i}\right)\left\llcorner\mathbf{B}_{\rho_{0}}\left(x_{0}\right) \mid \leqq c\left(x_{0}, \rho_{0}, \Gamma\right), \quad \mu_{\Sigma}-\right.\text { a. e. }
$$

where $\rho_{0}<\operatorname{dist}\left(x_{0}, \operatorname{spt} \partial \Gamma\right)$ is fixed. $\mathrm{H}\left(\sigma_{i}\right)$ denotes the generalized curvature of $\left[\sigma_{i}\right]$. Using ([SL], Lemma 19.1) we may choose some $\rho \leqq \rho_{0}$ small enough depending on $c\left(x_{0}, \rho_{0}, \Gamma\right)$ such that $\overline{B_{p}\left(x_{0}\right)}$ does not contain any closed σ_{i}.
Moreover each σ_{i} has to be of class $\mathbf{C}^{\mathbf{1 , 1}}$. Indeed, since the σ_{i} are parametrized by arc length, the first variation formula for $\llbracket \sigma_{i} \rrbracket$ reduces to

$$
\int \sigma_{i}^{\prime} \eta^{\prime} d t=\int \mathbf{H}\left(\sigma_{i}\right) \eta d t
$$

for all $\eta \in \mathrm{C}_{c}^{0,1}\left(0, \mathrm{~L}\left(\sigma_{i} \cap \mathbf{B}_{\mathrm{p}}\left(x_{0}\right)\right)\right)$.
Since $x_{0} \in \operatorname{spt} \Sigma$ we can find for every $\rho_{j} \leqq \rho(j \geqq 1)$ a curve σ_{j} intersecting $\mathrm{B}_{\rho_{j}}\left(x_{0}\right)$. Because there are no closed σ_{j} inside $\overline{\mathbf{B}_{\rho}\left(x_{0}\right)}$, each σ_{j} has to intersect $\partial \mathrm{B}_{\rho}\left(x_{0}\right)$ at least twice, which implies (by the continuity of the σ_{j})

$$
\mathbf{L}\left(\sigma_{j} \cap \mathbf{B}_{\mathrm{p}}\left(x_{0}\right)\right) \geqq \rho
$$

for large enough j. Hence (3.4) and the fact that $\mathbf{M}\left(\Sigma\left\llcorner B_{\rho}\left(x_{0}\right)\right)<\infty\right.$ imply that there are only finitely many σ_{j} contained in $B_{\rho}\left(x_{0}\right)$. If we choose ρ small enough we can even ensure that there exists an $N\left(x_{0}\right) \in \mathbb{Z}^{+}$ such that

$$
\Sigma\left\llcorner\mathrm{B}_{\mathrm{p}}\left(x_{0}\right)=\sum_{i=1}^{\mathrm{N}\left(x_{0}\right)} m_{i} \llbracket \sigma_{i} \cap \mathrm{~B}_{\mathrm{\rho}}\left(x_{0}\right) \rrbracket,\right.
$$

where each σ_{i} contains x_{0} and coinciding curves are counted with multiplicities.

We can the employ the decomposition argument of Corollary 2.13 to conclude that the tangents of all σ_{i} at x_{0} have to agree. Otherwise we could find a decomposition of Σ consisting of components which are not even differentiable at x_{0}.

We are now able to prove a monotonicity formula for T at points of $\operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma$.

3.5. Proposition

Let T satisfy the assumptions of Theorem 3.4. Let Γ be supported in an oriented embedded Jordan arc of class $\mathbf{C}^{1, \alpha}$.

Then for every $x_{0} \in \operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma$ we can find a radius $\rho\left(x_{0}\right)<\operatorname{dist}\left(x_{0}\right.$, spt $\left.\partial \Gamma\right)$ such that for every $0<\sigma<\rho \leqq \rho\left(x_{0}\right)$

$$
\begin{align*}
\rho^{-2} \mathbf{M}\left(T\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)\right. & -\sigma^{-2} \mathbf{M}\left(\mathbf{T}\left\llcorner\mathbf{B}_{\sigma}\left(x_{0}\right)\right)\right. \tag{3.5}\\
& \geqq \int_{\mathbf{B}_{\rho}\left(x_{0}\right) \sim \mathbf{B}_{\sigma}\left(x_{0}\right)} r^{-2}\left(1-\left|\nabla^{\mathrm{T}} r\right|\right) d \mu_{\mathrm{T}}-\frac{c}{\alpha}\left(\rho^{\alpha}-\sigma^{\alpha}\right)
\end{align*}
$$

where c depends only on the $\mathrm{C}^{1, \alpha}$-norm and the multiplicity of Γ.
Note in particular that (3.5) is independent of Σ.
Proof. - Let $x_{0}=0$. If $\rho(0)$ is small enough we can, for \mathscr{L}^{1}-a.e. $\rho<\rho(0)$, i. e. for those ρ s.t. $\partial\left(\Gamma\left\llcorner\mathbf{B}_{\rho}\left(x_{0}\right)\right)\right.$ is well defined (note that the following argument holds for arbitrary dimension), find a bi-Lipschitzhomeomorphism g_{ρ} in $\mathrm{B}_{\rho}(0)$ satisfying $\left.g_{\rho}\right|_{\partial \mathrm{B}_{\mathrm{p}}(0)}=\mathrm{id}$ and

$$
g_{\rho \sharp}\left(\Gamma\left\llcorner\mathbf{B}_{\rho}(0)\right)=0 \# \partial\left(\Gamma\left\llcorner\mathbf{B}_{\rho}(0)\right)\right.\right.
$$

where $0 \# \partial\left(\Gamma\left\llcorner B_{\rho}(0)\right)\right.$ denotes the cone over $\partial\left(\Gamma\left\llcorner B_{\rho}(0)\right)\right.$. (We can, for instance, look at $\operatorname{spt}\left(\Gamma\left\llcorner\mathbf{B}_{\rho}(0)\right)\right.$ as a graph over $\operatorname{spt}\left(0 \# \partial\left(\Gamma\left\llcorner B_{\rho}(0)\right)\right)\right.$.) For $t \in[0,1]$ let $h_{\rho}(t, x)=\operatorname{tg}_{\rho}(x)+(1-t) x$ and define

$$
\mathrm{T}_{\mathrm{p}}=-h_{\mathrm{p} ;}\left(\left[(0,1) \rrbracket \times\left(\Gamma\left\llcorner\mathbf{B}_{\mathrm{p}}(0)\right)\right) .\right.\right.
$$

From ([SL], 26.23) we obtain
$\begin{aligned} \mathbf{M}\left(\mathrm{T}_{\rho}\right) \leqq\left(1+\sup _{\mathbf{B}_{\rho}}\left|\mathrm{D} g_{\rho}\right|\right) \operatorname{dist}(\operatorname{spt}(& \Gamma\left\llcorner\mathbf{B}_{\rho}(0)\right), \\ & \operatorname{spt}\left(0 \geqslant \partial\left(\Gamma\left\llcorner\mathbf{B}_{\rho}(0)\right)\right)\right) \cdot \mathbf{M}\left(\Gamma\left\llcorner\mathbf{B}_{\rho}(0)\right)\right.\end{aligned}$
which, since spt $\Gamma \in \mathbf{C}^{1, \alpha}$, implies

$$
\begin{equation*}
\mathbf{M}\left(\mathrm{T}_{\rho}\right) \leqq c \rho^{n+\alpha} \tag{3.6}
\end{equation*}
$$

where c depends on the $\mathrm{C}^{1, \alpha}$-norm and the multiplicity of Γ.
Suppose now that

$$
\mu_{\mathrm{T}}\left(\partial \mathbf{B}_{\rho}(0)\right)=0
$$

and that the slices $\langle\mathrm{T}, r, \rho\rangle$ and $\partial\left(\partial \mathrm{T}\left\llcorner\mathrm{B}_{\rho}(0)\right)\right.$ are defined. (This holds for \mathscr{L}^{1}-a. e. ρ.)
Define

$$
\mathrm{S}_{\mathrm{\rho}}=0 \geqslant\langle\mathrm{~T}, r, \rho\rangle+\mathrm{T}_{\rho}+\mathrm{T} L\left(\mathrm{U} \sim \overline{\mathrm{~B}_{\rho}(0)}\right) .
$$

We obviously have for every $\varepsilon>0$

$$
\operatorname{spt}\left(S_{\rho}-T\right) \subset B_{\rho+\varepsilon}(0)
$$

Furthermore

$$
\begin{aligned}
& \partial(0 *\langle\mathrm{~T}, r, \rho\rangle)=\langle\mathrm{T}, r, \rho\rangle+0 * \partial\left(\Sigma\left\llcorner\mathrm{~B}_{\mathrm{p}}(0)\right)+0 * \partial\left(\Gamma\left\llcorner\mathrm{~B}_{\mathrm{p}}(0)\right)\right.\right. \\
& \partial\left(\mathrm{T}\left\llcorner\left(\mathrm{U} \sim \mathrm{~B}_{\mathrm{p}}(0)\right)\right)=\partial \mathrm{T}\left\llcorner\left(\mathrm{U} \sim \overline{\mathrm{~B}_{\mathrm{p}}(0)}\right)-\langle\mathrm{T}, r, \rho\rangle\right.\right. \\
& \partial \mathrm{T}_{\mathrm{p}}=\Gamma\left\llcorner\mathrm{B}_{\mathrm{p}}(0)-0 \geqslant \partial\left(\Gamma\left\llcorner\mathrm{~B}_{\rho}(0)\right)\right.\right.
\end{aligned}
$$

which gives

$$
\partial \mathrm{S}_{\mathrm{\rho}}-\Gamma=0 \# \partial\left(\Sigma\left\llcorner\mathbf{B}_{\rho}(0)\right)+\Sigma\left\llcorner\left(\mathrm{U} \sim \overline{\mathbf{B}_{\rho}(0)}\right) .\right.\right.
$$

Hence for every $\varepsilon>0$ we have (set $B_{\rho}=B_{\rho}(0)$)

$$
\mathbf{M}_{\mathbf{B}_{\boldsymbol{\rho}}+\varepsilon}\left(\partial \mathbf{S}_{\boldsymbol{\rho}}-\Gamma\right)=\mathbf{M}_{\mathbf{B}_{\boldsymbol{\rho}}}\left(0 \# \partial\left(\Sigma\left\llcorner\mathbf{B}_{\boldsymbol{\rho}}\right)\right)+\mathbf{M}_{\mathbf{B}_{\boldsymbol{p}}+\varepsilon} \sim \mathbf{B}_{\boldsymbol{p}}\left(\Sigma\left\llcorner\left(\mathrm{U} \sim \overline{\mathbf{B}_{\boldsymbol{\rho}}}\right)\right)\right.\right.
$$

Using the special local structure of one dimensional threads given in (3.3) of Theorem 3.4 which implies that for small enough $\rho 0 \geqslant \partial\left(\Sigma\left\llcorner B_{p}\right)\right.$ is supported in a finite number of line segments we obtain

$$
\mathbf{M}_{\mathbf{B}_{\boldsymbol{\rho}+\varepsilon}}\left(\partial \mathbf{S}_{\boldsymbol{\rho}}-\Gamma\right) \leqq \mathbf{M}_{\mathbf{B}_{\boldsymbol{\rho}}+\varepsilon}(\partial \mathbf{T}-\Gamma)
$$

Applying Proposition 1.3 we derive

$$
\mathbf{M}_{\mathbf{B}_{\boldsymbol{\rho}+\varepsilon}(0)}(\mathrm{T}) \leqq \mathbf{M}_{\mathbf{B}_{\boldsymbol{\rho}+\varepsilon}(0)}\left(\mathbf{S}_{\boldsymbol{\rho}}\right) .
$$

Since $\mu_{T}\left(B_{\rho}(0)\right)=0$ we can let ε tend to 0 to conclude

$$
\mathbf{M}\left(\mathbf{T}\left\llcorner\mathbf{B}_{\boldsymbol{p}}(0)\right) \leqq \mathbf{M}(0 \#\langle\mathbf{T}, r, \rho\rangle)+\mathbf{M}\left(\mathbf{T}_{\mathfrak{p}}\right)\right.
$$

which by (3.6) and the definition of $0 甘\langle T, r, \rho\rangle$ implies

$$
\mathbf{M}\left(\mathrm{T}\left\llcorner\mathbf{B}_{\rho}(0)\right) \leqq \frac{\rho}{2} \mathbf{M}(\langle\mathrm{~T}, r, \rho\rangle)+c \rho^{2+\alpha} .\right.
$$

The coarea-formula yields for \mathscr{L}^{1}-a. e. $\rho>0$

$$
\rho^{-2} \mathbf{M}(\langle T, r, \rho\rangle)=\rho^{-2} \frac{d}{d \rho} \mathbf{M}\left(T\left\llcorner\mathbf{B}_{\rho}(0)\right)-\frac{d}{d \rho} \int_{\mathbf{B}_{\rho}(0)} r^{-2}\left(1-\left|\nabla^{\mathrm{T}} r\right|\right) d \mu .\right.
$$

Hence we obtain in the usual way

$$
\frac{d}{d \rho}\left(\rho^{-2} \mathbf{M}\left(\mathbf{T}\left\llcorner\mathbf{B}_{\rho}(0)\right)\right) \geqq \frac{d}{d \rho} \int_{\mathbf{B}_{\rho}} r^{-2}\left(1-\left|\nabla^{\mathrm{T}} r\right|\right) d \mu_{\mathrm{T}}-2 c \rho^{\alpha-1}\right.
$$

The result follows by integration.

3.6. Remark

The monotonicity formula remains valid if we assume that in a neighbourhood of each point $x_{0} \in \operatorname{spt} \Gamma \Gamma$ is supported in a finite number of $C^{1, \alpha}$-arcs which intersect at x_{0}. We only have to check that an estimate like (3.6) still holds in this case for some current T_{ρ} connecting $\Gamma\left\llcorner B_{\rho}\left(x_{0}\right)\right.$ to the cone over $\partial\left(\Gamma\left\llcorner\mathrm{B}_{\mathrm{p}}\left(x_{0}\right)\right)\right.$.

3.7. Corollary

Let T and Γ satisfy the assumptions of Theorem 3.4. Then at each point $x_{0} \in \operatorname{spt} \Sigma \sim \operatorname{spt} \partial \Gamma$ there exists a mass-minimizing tangent cone C (with "vertex" 0) such that

$$
\partial \mathrm{C}=m_{\Sigma}\left(x_{0}\right) \llbracket l_{\Sigma} \rrbracket+m_{\Gamma} \llbracket l_{\Gamma} \rrbracket
$$

where l_{Σ}, l_{Γ} are the tangent directions of Σ and Γ at x_{0}, m_{Γ} is the multiplicity of Γ and $m_{\Sigma}\left(x_{0}\right)=\sum_{i=1}^{\mathrm{N}\left(x_{0}\right)} m_{i}$,

Proof. - As in ([SL], Chapt. 7).

3.8. Remark

$\partial\left(C\left\llcorner B_{1}(0)\right)\right.$ is given by a combination of great circles and great circle segments with multiplicities which has boundary

$$
m_{\Sigma}\left(x_{0}\right) \llbracket l_{\Sigma} \cap \partial \mathbf{B}_{1}(0) \rrbracket+m_{\Gamma} \llbracket l_{\Gamma} \cap \partial \mathbf{B}_{1}(0) \rrbracket .
$$

Note that in view of the interior regularity of C the curves involved are disjoint except at the endpoints of $l_{\Sigma} \cap B_{1}(0)$ and $l_{\Gamma} \cap B_{1}(0)$.

If in particular $x_{0} \in \operatorname{spt} \Sigma \sim \operatorname{spt} \Gamma$, the tangent cone C either will be supported in the union of halfplanes with boundary l_{Σ} or is a plane
containing l_{Σ} with some multiplicity p on one side of l_{Σ} and $m_{\Sigma}\left(x_{0}\right)+p$ on the other side of l_{Σ}.
If $x_{0} \in \operatorname{spt} \Gamma \sim \operatorname{spt} \partial \Gamma$ the cone C may have (possibly in addition to full planes and halfplanes bounded by l_{Σ} and/or l_{Γ}) decomposable components supported in the union of the two oriented regions into which the plane spanned by l_{Σ} and l_{Γ} is divided by the lines l_{Σ} and l_{Γ}.

REFERENCES

[AA] W. K. Allard and F. J. Almgren, The Structure of Stationary One Dimensional Varifolds with Positive Density, Inv. math., Vol. 34, 1976, pp. 83-97.
[AW] W. K. Allard, On the First Variation of a Varifold, Annals of Math., Vol. 95, 1972, pp. 417-491.
[AHW] W. H. Alt, Die Existenz einer Minimalfläche mit freiem Rand vorgeschriebener Länge, Archive Rat. Mech. Analysis, Vol. 51, 1973, pp. 304-320.
[B] J. Brothers, Existence and Structure of Tangent Cones at the Boundary of an Area Minimizing Integral Current, Indiana Univ. Math., Vol. 26, 1977, pp. 10271044.
[DHL] U. Dierkes, S. Hildebrandt and H. Lewy, On the Analyticity of Minimal Surfaces at Movable Boundaries of Prescribed Length, Journal f.d. Reine u. Angew. Mathematik, Vol. 379, 1987, pp. 100-114.
[FH] H. Federer, Geometric measure theory, Springer-Verlag, Berlin, Heidelberg, New York, 1969.
[HS] R. Hardt and L. Simon, Boundary Regularity and Embedded Solutions for the Oriented Plateau Problem, Annals of Math., Vol. 110, No. 1, 1979, pp. 439-486.
[HW] S. Hildebrandt and H. C. Wente, Variational Problems with Obstacles and a Volume Constraint; Math. Z., Vol. 135, 1973, pp. 55-68.
[N1] J. C. C. NrTsche, Vorlesungen über Minimalflächen, Springer, Berlin, Heidelberg, New York, 1975.
[N2] J. C. C. Nirsche, The Regularity of Minimal Surfaces on the Movable Parts of their Boundaries, Indiana Univ. Math. J., Vol. 21, 1971, pp. 505-513.
[N3] J. C. C. Nitsche, On the Boundary Regularity of Surfaces of Least Area in Euclidean Space, Continuum Mechanics and Related Problems of Analysis, Nauka, Moscow, 1972, pp. 375-377.
[SL] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, Vol. 3, 1983.
[WB] B. Whrte, Regularity of Area-Minimizing Hypersurfaces at Boundaries with Multiplicites, in Seminar on minimal Submanifolds, E. Bombieri Ed., Annals of Math., Studies, Vol. 103, Princeton Univ. Press, 1983.

[^0]: Classification A.M.S. : 49 F 10, 49 F 20, 49 F 22.

