Variational problems on classes of rearrangements and multiple configurations for steady vortices
Annales de l'I.H.P. Analyse non linéaire, Volume 6 (1989) no. 4, p. 295-319
@article{AIHPC_1989__6_4_295_0,
     author = {Burton, G. R.},
     title = {Variational problems on classes of rearrangements and multiple configurations for steady vortices},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {6},
     number = {4},
     year = {1989},
     pages = {295-319},
     zbl = {0677.49005},
     mrnumber = {998605},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1989__6_4_295_0}
}
Burton, G. R. Variational problems on classes of rearrangements and multiple configurations for steady vortices. Annales de l'I.H.P. Analyse non linéaire, Volume 6 (1989) no. 4, pp. 295-319. http://www.numdam.org/item/AIHPC_1989__6_4_295_0/

[1] A. Ambrosetti and P.H. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Functional Analysis, Vol. 14, 1973, pp. 349-381. | MR 370183 | Zbl 0273.49063

[2] V.I. Arnol'D, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Grenoble, Vol. 16, 1966, pp. 319-361. | Numdam | MR 202082 | Zbl 0148.45301

[3] T.B. Benjamin, The Alliance of Practical and Analytic Insights into the Nonlinear Problems of Fluid Mechanics. Applications of Methods of Functional Analysis to Problems in Mechanics, Lecture Notes in Math., No. 503, Springer, 1976, pp. 8-29. | MR 671099 | Zbl 0369.76048

[4] J.R. Brown, Approximation Theorems for Markov Operators, Pacific J. Math., Vol. 16, 1966, pp. 13-23. | MR 192552 | Zbl 0139.34702

[5] G.R. Burton, Rearrangements of Functions, Maximization of Convex Functionals, and Vortex Rings, Math. Annalen, Vol. 276, 1987, pp. 225-253. | MR 870963 | Zbl 0592.35049

[6] J.A. Crowe, J.A. Zweibel and P.C. Rosenbloom, Rearrangements of Functions, J. Functional Analysis, Vol. 66, 1986, pp. 432-438. | MR 839110 | Zbl 0612.46027

[7] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1977. | MR 473443 | Zbl 0361.35003

[8] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, 1952. | MR 46395 | Zbl 0047.05302

[9] Sir William Thomson (Lord KELVIN), Maximum and Minimum Energy in Vortex Motion, Mathematical and Physical Papers, Cambridge University Press, Vol. 4, 1910, pp. 172-183. | MR 1254662

[10] J.B. Mcleod, Rearrangements, preprint.

[11] H.L. Royden, Real Analysis, Macmillan, 1963. | MR 151555 | Zbl 0121.05501

[12] J.V. Ryff, Orbits of L1-Functions under Doubly Stochastic Transformations, Trans. Amer. Math. Soc., Vol. 117, 1965, pp. 92-100. | MR 209866 | Zbl 0135.18804

[13] J.V. Ryff, Extreme Points of Some Convex Subsets of L1 (0, 1), Proc. Amer. Math. Soc., Vol. 18, 1967, pp. 1026-1034. | MR 217586 | Zbl 0184.34503

[14] J.V. Ryff, Majorized Functions and Measures, Indag. Math., Vol. 30, 1968, pp. 431-437. | MR 234263 | Zbl 0164.15903

[15] D.G. Schaeffer, Non-uniqueness in the Equilibrium Shape of a Confined Plasma, Comm. Partial Differential Equations, VoL 2, 1977, pp. 587-600. | MR 602535 | Zbl 0371.35017