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WELL BEHAVED ASYMPTOTICAL CONVEX FUNCTIONS

A.A. AUSLENDER &#x26; J.P. CROUZEIX
Département de Mathématiques Appliquées, Université Blaise Pascal, BP. 45,

6317D Aubière, France

ABSTRACT : In this paper, we introduce the class JF of proper closed convex

functions for CR N which satisfy the following property.

"For all sequences {xn}, {c n } such that cn E 3f(x ) and lim c n = 0 wen n 

N 

n n 
n-oo 

n

have lim f(xn) = inf(f(x)jx E 

Characterizations and applications are then given.

I INTRODUCTION : In this paper all the functions f are proper-closed convex

functions and we consider the optimization problem (P)

"Find a minimizing sequence {yn} } of (P), i.e., such that :

lim f(y ) = m = inf ( f (x) |x ~ RN)

In mathematical programming, f or proving the convergence of algori thms, one always

supposes that the sequences {xn} } constructed by the algorithm are bounded, or that

the function f is inf-compact (i.e., for all B the set {x:f(x) ~ À} is bounded),

which in general ensures that the sequence {x n } is bounded. What happens when

{xn} } is unbounded, when f is not inf-compact? This question has not been con-

sidered in literature. For instance, for the proximal method, the Rockafellar

convergence theorem [8J claims : "If the optimal set of solutions of P is nonempty

then {x ) } converges to an optimal solution, else we have lim +~". In fact,

we shall prove that for a large class of convex functions which has a good behaviour

at the infinity the previous sequence {xn} } is a minimizing sequence.
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For defining such a class, let us remark that numerical methods generate

decreasing sequences {f(x } which are expected to be converging to m. In practice -

the iterative process is stopped when some condition on the iterate is satisfied.

For such a stopping rule in the dif ferentiable case one can think of 

where e is positive. Since a necessary and sufficient condition for optimality at

x is that Vf(x) = 0 it can be expected that if £ is small enough f(x ) is closed

to m. In fact, as soon as the sequence {xn} } is bounded, the criteria 

implies that f(xn) converges to m. This is in particular the case when f is inf-

compact. Unfortunately, in the unbounded case, there are convex functions and

sequences such that (Vf(x )} tends to the null vector but the sequence {f(xn;
does not tend to m. Consider for example the function f given by Rockafellar f9]:

In this case the sequence {(p2,p )} is unbounded so that one can speak of a bad
n n

asymptotical behaviour of the function f. By definition, we shall say that a

closed-proper convex function f on RN has a good asymptotical behaviour if :

"For all sequences (x }, {c } c E 3f(x ) (subdifferential of f at x ) :
n n n n n

The class of these functions will be denoted by. In fact, we shall restrict in

general ourselves in the paper to the class of functions f E f such that

and we shall denote this class by ~.
As an application of functions in ~ one can consider the concept of entropy whir

is very important in sciences. The most used measure of entropy is the "x log x"

entropy defined on the nonnegative orthant !R by

Other measures have been considered. In particular, the "Log x" entropy defined or
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the same set by

See for example, the recent paper [4J by Censor and Lent. At this time we shall

remark only that the first one is inf compact while the second one is only in JF1.
In section II we shall study the classes J and :F1; some equivalent characterizations

will be given. In section III we shall prove that these classes of functions

allow us to study the convergence of classical optimization methods which generate

unbounded sequences. We shall restrict ourselves to two fundamental algorithms

based on the proximal idea initiated by Moreau. Through the following (.,.) denotes

the usual inner-product, ~.~ the associated Euclidian norm .

II CHARACTERIZATIONS

Let 3 f(x) be the E-subdifferential of f at x with c &#x3E; 0 :

Proposition 2.1 I f belongs to ~ iff for every sequence (x ,c ,£ } such that
n n n

we have

Proof We have only to prove that if f E f and if (2.I) is satisfied then

{x ) } is a minimizing sequence. From the theorem of Br~ndstedt and Rockafellar

f3] there exis t x and 1 such that c E 3f(x ),
" - n n n n

From (2. 1) and (2.2) we obtain lim c - 0 and since f E j=" it follows:
n

n-- 00
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But since

It follows from (2.!), (2.2) and (2.3)

For characterizing convex functions which have a good asymptotical behaviour,

that is to say, which satisfy (I. I) i t is useful to s tudy the asymptotical

behaviour on the boundary of the level set S.(f) = {x : f(x) ~ À} for À &#x3E; m. °

For this purpose let be the Euclidean distance from x to S~,(f) and

whe re f’(x;d) denotes the directional derivative of f at x in direction d.

Set domf = {x: f(x)  and let ri(dom f) be the relative interior of dom f.

Lecrana 2. l If C ri (dom f ) and 03BB &#x3E; m then

Proof The proof is based on ideas used in Auslender and Crouzeix [2J in a

more general context. For the sake of completeness we shall develop it

briefly. Let x ~ S.(f). Let y be the projection of x on SÀ(f) :

d(x~(f))- ~ II .

Clearly fey) - À and there exists a &#x3E; 0 such that a(x-y) E 3f(y). Then

£(x) - À - f(x)-f(y) $. (c,x-y) iic e 3f(y).

Let h - a(x-y), then :

From what we deduce that k(X). Now let y and h be such that

f(y) - À and h E 3f(y), then since h ~ 0(a ~ m) we have
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Taking x = y + then it follows that x f S, (f) for t &#x3E; 0 and since

t = I Ix-yl I = we have k(03BB)  f(y; 2014-2014) ) and finally

Theorem 2.2 Let f a proper-closed convex function on RN satisfying (1.2)

then we have the equivalences :

1 ) 

2) r(X) &#x3E; 0 iia &#x3E; m.

3) k(À) &#x3E; 0 iia &#x3E; m.

Proof 1 ) ~ 2). Suppose that f E j= and there exis ts some À &#x3E; m such that

r(À) = 0, then from (2.4) there exists sequences {xn} } and {cn} } with cnE 3f(x )
such that

which contradicts that f E J.

2 ) ==&#x3E; 3). Th i s i s an inmediate consequen ce f rom the inequality

3) =~ 1) . Suppose that k(X) &#x3E; 0 for all À &#x3E; m and that f ; then

there exists a sequence (x ,c } and X &#x3E; m such that
n n

Let X E (m,A). Then from lemma 2.!,k(A) = and

Le t x be such that
n

so tha t f rom ( 2 . 9 ) :



106

Since f is convex and c e 3f(x )
n n

which, combined with (2.11) yields to

which is not possible since {cn} } converges to 0. 0

What is more surprising is that the functions r(.) and k(.) are non

decreasing. For proving this we must investigate the properties of the

support function of SÀ(f), À &#x3E; m. Let

Then the following properties obviously hold.

i) -~  F(x.,À) ~ f) = sup{(x,x.) Ix 6 dom f J VÀ &#x3E;m.

ii) for all A &#x3E; m, F(.,A) is closed proper convex and positively

homogeneous.

iii) F(0,X) = 0 m.

iv) F(x*,.) is nondecreas ing Vx*.

Furthermore, set 03C8x *(x,03BB) = (x,x*) - f); then * sup 

Since f is convex then ’ x* _is concave and therefore

v) F(x*, . ) is concave Vx*.

For all À &#x3E; m we denote by KÀ the barrier cone of S~(f) i.e., ’

KÀ - {x*: F(x*,À)  +°o). Then K. is convex. Because the function 
. 

F(x*,.)

is concave and the interior of its domain is (m,+oo), then F(x*,.) is con-

tinuous on and we have

Then in the following we denote by K the common barrier cone of level

se ts &#x3E; m; furthermore, F i s a f ini te convex-concave func t ion on

K x (m.-Kc). Let us denote by 3 ~F(x*,A) the subdifferential of the convex

function F(.,~*) at x*, the super-differential of the concave



107

concave function F(x*,.) at B and define

Propos i tion 2 . 3

a) S(x*,A) = 3 
x *F(x*,a) for all x* E &#x3E; m.

b) S(x*,A) is non-empty for all x* E &#x3E; m.

c) For A &#x3E; m if F(x*,A)  o.(x.ldom f) then f(x) = À for all x E S(x*,B).

Proof

a) Since F(.,~) is the support function of the closed convex set S~(f) we

have :

+ F(x.,À) = x ~ S(x*,A).

b) The subdifferential of a convex function is non-empty on the relative

interior of its domain.

c) Suppose that x E S(x.,À) and f(x)  À. Then F(x.,1.1) = F(x*,~) for all

p 6 [f(x) ~].
Since F(x*, . ) is concave, F(x’,À) = sup F(x*,u) = 3*(x* )dom f) . D

1.1

Proposition 2.4 Assume that x E and f(x) = À &#x3E; m.

a) if F(x.,À)  f), then 3.F(x*,~) = À.af(x)}.

b) if F(x*,~) = f), then 3~F(x*,~) = {A*/x*~ J (0).

Proof Set ~(1J) = -F(x.,U}, then ~ is a proper convex function which is

continuous on (m,-K~). Consider ~*, the conjugate function of ~ :

4&#x3E;*(1J*) = sup + x*,y&#x3E; : t tj].
P.y

Then

and therefore, since f(x) = À and W(X) = - (x,x*), À. belongs to at(1) iff

Then a) and b) follow straightforwardly. Q

,
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Conversely, we have

Proposition 2.5 If f (x) &#x3E; m,

3f(x) - {x./x E S(x*,f(x)) = and 1 E 

Proof Observe first that from sufficient optimality conditions we have

x* E 3f(x) ==&#x3E; x ~ S(x*,f(x)).

Now le t x,x* be such that x E S(x*,f(x)); then as before -I E iff

f*(x*) - (x,x*) =-f(x), that is iff x* = 3f(x). Furthermore, -) E 

if f I E aÀF(x.,f(x». D

In view of the strong connection between 3f(x) and 3 F(x*,A) we introduce
the following function k defined on 

k(À) = inf sup {-L : u C K, Ilx.’1 = I} } (2. 13)
1-1 "

with by convention 1  = +~ if u " = 0.

Proposition 2.5

a) (03BB)  0 VA &#x3E; m,

N -

b) k is non decreasing on (m,+")~

c) 1~(A) = inf sup E a~F(x* , ~) , x* E 1 }, (2.14)
x* p 

1J

Proof a) and b) are direct consequences of the monotonicity and concavity

’properties of functions F(x*,.).

c) Let x*~ K, Ü = E a~F(x~,a)~ . W~ shall show that for any ~ such

that (  p, there is some x* E ri (K) such that ~  ~ for all p E 3.F(x*,A). "
Hence c) will follow.

Let riCK) and x; = x’-- ll (x ~ - x*). Then from Corollary 7.5.1 1 [9]
we obtain

lim F(x’,t) for all t E 
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Set 03B8(t) = F(x’.t), 0 (t) a F(x*n,t). Since 8 is concave and

there exists some t &#x3E; À such that

But then there exists n such that

Take x* = x*. D
n

Propos i t ion 2 . 6 Let A and ~’ be such that m  ~  A* t  +00 and

S03BB’(f ) C r I (dom f) then

(03BB)  k(03BB)  (03BB’)  k(A’)

so that k is non decreasing on when ( 1 .2) is satisfied.

a) Prove that k(~) ~ k(X). Let x and c be such that f(x) = X, c ~ 3f(x)

and f’ (x; c)  Such a couple always exis ts since ri (dom f ) . Take

x* = lc, then F(x*,A) = f) and x 6 S(x*,X) . Hence,

by proposition 2.4

sup - :  e = Sup[  : x* ~ ~f(x)]  sup[(x*,d) :d 6 
v ~ u

It follows from 2.6 and 2.13 that t~(A) ~ 
b) Prove that k(~’). Of course, we assume that k(~’)  +00.

Let any e &#x3E; 0, by relation (2. 14) there is some x* E ri(K) such that ~ ~ x" ~ ~ ~ 1

and

Next, by propositions 2.3 and 2.4 there are some x 6 S(x*,~’) and uo &#x3E; 0

such that

~ and k(~’ ) + e.

Now, le t x be the Eucl idean pro jection of x on the closed convex 
se t

Then a. and there exist c 6 
i 

&#x3E; 0 such that
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x - Utc. Since f is convex we have

then

Letting e2014 0 we deduce that k(~) ~ k(~’ ) .

Proposition 2. 7 Let f be a dif ferentiable convex function on an open convex

set C of Rn then k(À) = k(À) for all À &#x3E; m.

Proof In this case inf ( f’ (x; 
j 

d ) d E I 

On the other hand, for al l x* E ri (K) such t F(x’,.)

is dif ferentiable at À and VÀF(x*,À) = 
~~f(x)~-1 
where x is any point in

S(x*,A). Then it follows easily that k(A) = k(À).

Proposition 2.8 Let À and ~’ be such that m  À  À’  ~ and f)

then

so that r is non decreasing on when ( 1 .2) is satisfied..

Proof Let a~ E ~ J1, 7l’ C, x and d be such that f(x) = a’ and d E af(x). Set

x* = d ~d~
. Then E a F(x*, a) and consequently, by concavity of F(x.,.)

for all u E 

Then from (2.13) it follows

so that

Since from (2.7) r(X’ ) ~ k(A’) then from proposition 2.6 it follows that
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Proposition 2. 9 Let f and g be two closed proper convex functions on 01531’4

and h - fVg be the inf convolution of f and g :

h(x) - inf (f (x-y) + g(y) !y E 

Suppose that at each x the infinum is attained, and that f is inf-compact then

g E f iff h E y.

Proof I) &#x3E; Set m = inf(h(x) x E inf(g(x) x E m2 = inf(f(x) x E 

Obviously, we have :

2) Suppose that g6 T and let (x ,x*} be a sequence such that
n n

From proposition 6.6.4 [7J- if y satisfies h(x ) = f(x -v ) + o(v ) then

Since f, g it follows from (2.16) that

and then from (2.15) we obtain

3) Suppose now that h E F and le t {y ,y*) } be a sequence such that
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Since f is inf-compact, f * is continuous at 0. It follows that: there exists

a neighbourhood V* of 0 such that dom and then for n large enough

there exists zn with -yn e Set z n + 

y . n Sufficient optimality

conditions imply that h(xn) = + g(y ) and from proposition 6.6.4 [7 ]

yn e 3h(x~). Since f and h belong to ~F we obtain from (2. 17) t

and it follows from (2. J5) that

Remark There are two particularly important cases where the infimum in

h(x) is attained for each x. First when f = J and g is bounded from

below, secondly when f = ~~~.~i2. We obtain then the corollary

Corollary 2.5 Let g be a closed proper convex function then

2 ) i f g i s bounded f rom below, g E JF i f f g V 11./ f E ~

Remark It is not obvious to find examples of convex functions defined on the

whole space Rn, differentiable everywhere which do not belong to the class e.7 I,
Taking the function f given in the introduction by formula (!.0) and

g = fV 1 2||.||2, it follows from the corollary that g is differentiable on R2
and doe s no t belong to Y.

Given gl and g2 two closed proper convex functions having the same

domain D we say that gl rv g2, if there exists a real valued strictly increasing
continuous function k on gl(D) such that

Clearly, the relation ~ is reflexive, symmetric and transitive. Denote

by G the class of closed proper convex functions which are equivalent to g
by relation~. Then there exists in G a function g which is minimal in the

sense that for all g E G, the function k , such that g - k o g, is convex

(Debreu [’5J, Kannai [6]).

Proposition 2.10 If g1 E F1 and g2 ~ g’1 then g2 E F1.
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Proof Let us consider G the class of functions which are equivalent to

g 1 and g a minimal function in G then there exists two increasing convex

functions k 1 and k2 such k l o g and g2 = k2 o g. Note that

3g.(x) = LBx. : À E 3k. x* e 3g"(x)}. It follows that f if and

only 

Examples The class F1 contains, of course, the class of inf-compact convex

functions. But many other functions belong to ~1. Let us consider, for

instance, the positive semi-definite quadratic function

This function can be decomposed as

with A symmetric positive definite. If 0 then 

and necessarily f E ~1. If a2 - 0, then It follows

that if then 2014~ inf -

An interesting example is the "Log x" entropy defined on the positive orthant

by

Then -h belongs to ef but is not inf-compact in contrast with the usual

"x Log x" entropy. The fact that "x Log x" is inf-compact seems to be one

of the reasons why the "x Log x" entropy has been of ten preferred to the

"Log x" entropy, even if the last one has some interest. Entropy arises in

various fields of applications including chemistry, image processing,

statistics, ... A recent reference is Censor and Lent where the "Log x"

entropy is discussed. Closely related to the "Log x" entropy are the Cobb-

Douglas functions

then -r E. The Cobb-Douglas functions are very much used in economics.
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Remark The class ~ appears to be use ful in several fields of

mathematics dealing with the asymptotical behaviour of convex functions.

Let us consider, for instance, the differential inclusion problem : Find x

differentiable : [0, such that

When f is a prope r closed convex function, then there exists a unique

solution x to (2. 18) . If, in addition, the set of optimal solutions of (P)

is non-empty, then x(t) conve rges to an optimal solution of (P) when

t - +0° ( theorem 2, p . 160 

When (P) has no optimal solutions but f E dT, then we have the follow-

ing result.

To see that, we report to the proof given in [I] page 160. Defining

A = (t &#x3E; 0: x(t)  c) we have meas(A ) = 00. Then there exists a sequence
£ j e

{x(t )} such that c E 3f(x(t » and c - 0. Since f E I, then f(x(t ))2014 m.
n n n n n

But the function t - f(x(t)) decreases and therefore f(x(t)) -- m when

t - +00.
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III CONVERGENCE OF CLASSICAL ALGORITHMS

As said in the introduction, the convergence of classical algorithms in

unconstrained optimization suppose in general that the generated sequences 

are bounded. (This will be the case in particular when f is inf-compact). In

this section we shall restrict ourselves on two methods : the approximate proximal

method and a gradient method, and we shall prove that convergence can be also

obtained for unbounded sequences, provided that f E ~l.

3. I Convergence of the approximate proximal method

Let (e } be a sequence of positive reals converging to zero. Then the

classical approximate proximal method consists to generate, from a starting

point x. a sequence {x ) } by the rule :

where $ is given by :

We shall assume in addition that

which is equivalent to :

Remark Given x , such a point x 1 always exists and is obtained in the
n n+

following way. Let x be such that
n

If 03A6 (x )  03A6 (x ) set x , = x otherwise set x , = x .
n n 

" 

n n n+! I n n+! n

Theorem 3.! Suppose that f ~ J" , then {x } is a minimizing sequence.

Proof By construction, the sequence {f(x )) is non increasing. Denote by ~

its limit and assume for contradiction that &#x26; &#x3E; m. From (3.3), it follows

that !!x . - xn|| converges to 0.
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Denote by y the point where ~ reaches its minimum. Since ~ is
n n n

strongly convex, we have :

f rom what we deduce

and ( x - y I I converges to 0. On the other hand,

from what we deduce that (f (yn) ) converges to ~.

Let 03BB e (m,l). There exis ts n such that f(y ) for all 

From optimality conditions there exists d e 3f(y ) such that

But then {d } converges to 0, in contradiction with f ~- f and f(y ) ?,.. À &#x3E; m..
n ! n

3.2 Convergence of a proximal-gradient method

In this section we suppose that f is differentiable We shall

modify slightly the stepsize rules of the gradient method. Instead of

minimizing f along the descent half-line{xn - tvf(x ) I t  0},

we shall minimize the regularized proximal function $ n 
c f + 1 2||. - x !j. 2

This is necessary for defining correctly the algorithm. Indeed, if f

is not inf-compact there does not exist necessarily a real t which minimizes
n

f on this half line.

Furthermore, in order to obtain convergence results we suppose in addition

that Vf(.) is uniformly continuous on each level set of f, that is to say :

where

This assumption is satisfied trivially for example for quadratic functions,

f (~.) - e , ...
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3.2.1 Proximal-gradient method with exact minimization

Starting from an arbitrary point xo we construct the sequence {x } by

the following rule : suppose x computed. If 7f(x ) " 0 stop, else

where t minimizes on R the function t ~ 03A6 (x - tVf(x )).
n + n n n

Theorem 3.2 Suppose that f 6 ~~ I then for each n f(x ) ~ f (xn) and

{x ) is a minimizing sequence.

Proof Wi thout loss of general i ty we can suppose that 0 for al l n.

Then satisfies the equation

and we have

From (3.7) it follows that

lim f(x ). If &#x26; = ~~, the theorem is proved, if not 9, is finite and
n 

from (3.7) we obtain then :

Dividing both numbers of (3.6) I we obtain :

so that

and from (3.9) we obtain then

Since f E ~l I it follows that {xn} is a minimizing sequence.
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Remark This algorithm can be also interpreted as being the proximal

method in which, instead of minimizing at each step the function 03A6n on RN,
one does only the f i rs t s tep of a gradient method.

Except for quadratic functions, minimizing ~n on the half line

{x - I t 0) is not in general an implementable rule. We introduce

now, an implementable step-size rule (Goldstein-Armi jo) for which we shall 1 see

that convergence can also be obtained.

3.2.2 Gradient proximal method with Goldstein-Armijo stepsize rule

Starting from an arbitrary point x we construct the sequence {xn} } by

the following rule :

Suppose x computed. If Vf(x ) = 0 stop. Else :

where t n is given by the implementable rule : .

Proposition 3. 3 If 0 then there exists in such that

Proo f Le t us remark f i rs t that

so that (3.6) is equivalent to :

If the supremum in (3.!!) is not reached then for each i &#x3E; 1, we have :

Passing to the limit we obtain then



119

which yields to a 

Theorem 3.4 The sequence (f(x )i 1 converges to m.

Proof From (3 . 10) and (3.!!) we obtain

Then the sequence {f(x )) is non increasing. Let L be its limit. Assume for

contradiction that £ &#x3E; m ~ -We Since f(x ) - f(x ) tends to 0, then from
n n+

By definition of t we have :

and

By continui ty , there exis ts 0 E [1 ,2) such that

and by the mean value theorem, there exists  n E {0, 1 ) such that

where xn - tn 20142014201420142014201420142014x- , ,

then
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