@article{AIHPC_1989__S6__259_0, author = {Fournier, G. and Willem, M.}, title = {Multiple solutions of the forced double pendulum equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {259--281}, publisher = {Gauthier-Villars}, volume = {S6}, year = {1989}, mrnumber = {1204018}, zbl = {0683.70022}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1989__S6__259_0/} }
TY - JOUR AU - Fournier, G. AU - Willem, M. TI - Multiple solutions of the forced double pendulum equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 1989 SP - 259 EP - 281 VL - S6 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1989__S6__259_0/ LA - en ID - AIHPC_1989__S6__259_0 ER -
Fournier, G.; Willem, M. Multiple solutions of the forced double pendulum equation. Annales de l'I.H.P. Analyse non linéaire, Volume S6 (1989), pp. 259-281. http://archive.numdam.org/item/AIHPC_1989__S6__259_0/
[1] A variant of the Lusternick-Schnirelman Theory, Indiana J. Math 22, (1972) 65-74. | MR | Zbl
,[2] A Simplicial Approach to the Fixed Point Index, Fixed Point Theory, Sherbrooke, Quebec 1980, Edited by E. Fadell and G. Fournier, Springer-Verlag 886. 73-102 | MR | Zbl
,[3] On Periodic Solutions of Forced Pendulum-like Equations, J.Differential Equations 60(1985), 381-395. | MR | Zbl
- ,[4] Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J.Differential Equations 52(1984), 264-287. | MR | Zbl
- ,[5] Some Minimax Principles and their Applications in nonlinear Elliptic Equations, Journal d'analyse mathématiques 37( 1980), 248-275. | MR | Zbl
,[6] The Lusternik-Schnirelman theory on Banach manifolds, Topology 5(1966), 115-132. | MR | Zbl
,[7] Periodic Solutions of Lagrahgian Systems with Bounded Potential, Preprint. | MR
, and ,