@article{AIHPC_1989__S6__49_0, author = {Artstein, S.}, title = {A variational convergence that yields chattering systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {49--71}, publisher = {Gauthier-Villars}, volume = {S6}, year = {1989}, mrnumber = {1204009}, zbl = {0674.49026}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1989__S6__49_0/} }
Artstein, S. A variational convergence that yields chattering systems. Annales de l'I.H.P. Analyse non linéaire, Tome S6 (1989), pp. 49-71. http://archive.numdam.org/item/AIHPC_1989__S6__49_0/
[1] Topological dynamics of an ordinary differential equation. J. Differential Equations 23, 1977, 216-223. | MR | Zbl
,[2] Distributions of random sets and random selections. Israel J. Math. 46, 1983, 313-324. | MR | Zbl
,[3] Optimal Control. McGraw Hill, New York, 1966. | MR | Zbl
and ,[4] Variational Convergence for Functions and Operators. Pitman, Applicable Mathematics Series, Boston, 1984. | MR | Zbl
,[5] Convergence of Probability Measures. John Wiley, New York, 1968. | MR | Zbl
,[6] Some relaxation problems in optimal control theory. J. Math. Anal. Appl. 125, 1987, 272-287. | MR | Zbl
,[7] Relaxation and Γ-limits in optimal control theory. Lecture in the Congrés Franco-Quebecois D'Analyse Non Linéaire Appliquée, Perpignan, Juin 1987.
,[8] r-convergence and optimal control problems. J. Optimiz. Theory Appl. 38, 1982, 385-407. | MR | Zbl
and ,[9] On a theorem of N.N. Bogolyubov. Ukranain Math. J. 4 (2), 1952, 215-218.
,[10] Generalized ordinary differential equations. Czech. Math. J. 8, 1958, 360-388. | MR | Zbl
,[11] Una theorema sulla funzioni continue rispetto ad una i misurable rispetto at ultra variable. Rend. Sem. Mat. Univ. Padova 17, 1948, 102-106. | Numdam | MR | Zbl
,[12] Optimal Control of Differential and Functional Equations. Academic Press, New York 1972. | Zbl
,[13] Calculus of Variations and Optimal Control Theory. W.B. Saunders, Philadelphia 1969. | Zbl
,