@article{AIHPC_1990__7_4_269_0, author = {B\'ethuel, Fabrice}, title = {A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {269--286}, publisher = {Gauthier-Villars}, volume = {7}, number = {4}, year = {1990}, zbl = {0708.58004}, mrnumber = {1067776}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1990__7_4_269_0/} }
TY - JOUR AU - Béthuel, Fabrice TI - A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 1990 DA - 1990/// SP - 269 EP - 286 VL - 7 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1990__7_4_269_0/ UR - https://zbmath.org/?q=an%3A0708.58004 UR - https://www.ams.org/mathscinet-getitem?mr=1067776 LA - en ID - AIHPC_1990__7_4_269_0 ER -
Bethuel, F. A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 4, pp. 269-286. http://archive.numdam.org/item/AIHPC_1990__7_4_269_0/
[B] private communication.
,[BCL] Harmonic maps with defects.Comm. Math. Phys., t. 107, 1986, p. 649-705. | MR 868739 | Zbl 0608.58016
, and ,[Bel] The approximation problem for Sobolev maps between two manifolds, to appear. | MR 1120602 | Zbl 0756.46017
,[BZ] Density of smooth functions between two manifolds in Sobolev spaces. J. Func. Anal., t. 80, 1988, p. 60-75. | MR 960223 | Zbl 0657.46027
and ,[CG] Minimizing p-harmonic maps into spheres, preprint. | MR 1018054
and ,[H] Approximations of Sobolev maps between an open set and an euclidean sphere, boundary data, and singularities, preprint. | MR 1010196
,[SU] A regularity theory for harmonic maps. J. Diff. Geom., t. 17, 1982, p. 307-335. | MR 664498 | Zbl 0521.58021
and ,[W] Infima of energy functionals in homotopy classes. J. Diff. Geom, t. 23, 1986, p. 127-142. | MR 845702 | Zbl 0588.58017
,