Surfaces of constant Gauβ curvature and of arbitrary genus
Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 1, pp. 1-15.
@article{AIHPC_1991__8_1_1_0,
     author = {B\"ohme, R.},
     title = {Surfaces of constant {Gau\ensuremath{\beta}} curvature and of arbitrary genus},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--15},
     publisher = {Gauthier-Villars},
     volume = {8},
     number = {1},
     year = {1991},
     zbl = {0747.53008},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1991__8_1_1_0/}
}
TY  - JOUR
AU  - Böhme, R.
TI  - Surfaces of constant Gauβ curvature and of arbitrary genus
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1991
SP  - 1
EP  - 15
VL  - 8
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1991__8_1_1_0/
LA  - en
ID  - AIHPC_1991__8_1_1_0
ER  - 
%0 Journal Article
%A Böhme, R.
%T Surfaces of constant Gauβ curvature and of arbitrary genus
%J Annales de l'I.H.P. Analyse non linéaire
%D 1991
%P 1-15
%V 8
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1991__8_1_1_0/
%G en
%F AIHPC_1991__8_1_1_0
Böhme, R. Surfaces of constant Gauβ curvature and of arbitrary genus. Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 1, pp. 1-15. http://archive.numdam.org/item/AIHPC_1991__8_1_1_0/

[1] H. Behnke and F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, Springer Verlag, Berlin, Heidelberg, New York, 3. Aufl., 1972. | MR | Zbl

[2] R. Böhme, Plateau Problems in R3, which can be Solved by Minimal Surfaces of Any Finite Genus, Proceedings, Metz, 1989 (in press).

[3] J. Oliker, Hypersurfaces in Rn+1 with Prescribed Gauss Curvature and Related Equations of Monge-Ampère Type, Comm. Part. Diff. Eq., Vol. 9, 1984, pp. 807-838. | MR | Zbl

[4] R. Böhme and A.J. Tromba, The Index Theorem for Classical Minimal Surfaces, Ann. Math., Vol. 113, 1981, pp. 447-499. | MR | Zbl

[5] R. Böhme, Manifolds of Dimension 3 with Prescribed Positive Curvature and with Nontrivial Homology, Forum Mathematicum, 1990 (to appear). | MR | Zbl