@article{AIHPC_1991__8_1_79_0, author = {Benci, V. and Fortunato, D. and Giannoni, F.}, title = {On the existence of multiple geodesics in static space-times}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {79--102}, publisher = {Gauthier-Villars}, volume = {8}, number = {1}, year = {1991}, mrnumber = {1094653}, zbl = {0716.53057}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1991__8_1_79_0/} }
TY - JOUR AU - Benci, V. AU - Fortunato, D. AU - Giannoni, F. TI - On the existence of multiple geodesics in static space-times JO - Annales de l'I.H.P. Analyse non linéaire PY - 1991 SP - 79 EP - 102 VL - 8 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1991__8_1_79_0/ LA - en ID - AIHPC_1991__8_1_79_0 ER -
%0 Journal Article %A Benci, V. %A Fortunato, D. %A Giannoni, F. %T On the existence of multiple geodesics in static space-times %J Annales de l'I.H.P. Analyse non linéaire %D 1991 %P 79-102 %V 8 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1991__8_1_79_0/ %G en %F AIHPC_1991__8_1_79_0
Benci, V.; Fortunato, D.; Giannoni, F. On the existence of multiple geodesics in static space-times. Annales de l'I.H.P. Analyse non linéaire, Volume 8 (1991) no. 1, pp. 79-102. http://archive.numdam.org/item/AIHPC_1991__8_1_79_0/
[1] The Topology of Functional Manifolds and the Calculus of Variations in the Large, Russian Math. Surv., Vol. 25, 1970, p. 51-117. | MR | Zbl
,[2] Essais de géométrie Riemanniene hyperbolique: Applications to the relativité générale, Inst. Fourier, Vol. 132, 1963, p. 105-190. | Numdam | MR | Zbl
,[3] Abstract Critical Point Theorems and Applications to Some Nonlinear Problems with "Strong Resonance" at Infinity,Nonlinear Anal. T.M.A., Vol. 7, 1983, pp. 981-1012. | MR | Zbl
, , and ,[4] Global Lorentzian Geometry, M. Dekker, Pure Appl. Math., Vol. 67, 1981. | MR | Zbl
and ,[5] Periodic Solutions of Lagrangian Systems on Compact Manifold, J. Diff. Eq., Vol. 63, 1986, pp. 135-161. | MR | Zbl
,[6] Existence of Geodesics for the Lorentz Metric of a Stationary Gravitational Field, Ann. Inst. H. Poincaré, Anal. non linéaire, Vol. 7, 1990, pp. 27-35. | Numdam | MR | Zbl
and ,[7] Periodic Trajectories for the Lorentz Metric of a Static Gravitational Field, Proc. on "Variational Problems", Paris, June 1988 (to appear). | MR | Zbl
and ,[8] On the Existence of Infinitely Many Geodesics on Space-Time Manifolds, preprint, Dip. Mat. Univ. Bari, 1989. | MR
and ,[9] On the Existence of Geodesics in Static Lorentz Manifolds with Nonsmooth Boundary, preprint. Ist. Mat. Appl. Univ. Pisa.
, and ,[10] On p-convex Sets and Geodesics, J. Diff. Eq., Vol. 75, 1988, pp. 118-157. | MR | Zbl
,[11] Closed Timelike Geodesics, Trans. Am. Math. Soc., Vol. 285, 1984, pp. 379-388. | MR | Zbl
,[12] Compact Lorentzian Manifolds Without Closed Nonspacelike Geodesics, Proc. Am. Math. Soc., Vol. 98, 1986, pp. 119-124. | MR | Zbl
,[13] Periodic Trajectories for a Class of Lorentz Metrics of a Time-Dependent Gravitational Field, preprint, Dip. Mat. Univ. Bari, 1989. | MR
,[14] Periodic Trajectories in Static Space-Times, preprint, Dip. Mat. Univ. Bari, 1989. | MR
,[15] The Large Scale Structure of Space Time, Cambridge Univ. Press, 1973. | MR | Zbl
and ,[16] Morse Theory, Ann. Math. Studies, Vol. 51, Princeton Univ. Press, 1963. | Zbl
,[17] The Embedding Problem for Riemannian Manifolds, Ann. Math., Vol. 63, 1956, pp. 20-63. | MR | Zbl
,[18] Semi-Riemannian Geometry with Applications to relativity, Academic Press Inc., New York-London, 1983. | Zbl
,[19] Critical Point Theory and the Minimax Principle, Global Anal., Proc. Sym. "Pure Math.", Vol. 15, Amer. Math. Soc., 1970, pp. 185-202. | MR | Zbl
,[20] Morse Theory on Hilbert Manifolds, Topology, Vol. 22, 1963, pp. 299- 340. | MR | Zbl
,[21] Techniques of Differential Topology in Relativity, Conf. Board Math. Sci., Vol. 7, S.I.A.M., Philadelphia, 1972. | MR | Zbl
,[22] Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reg. Conf. Series, Am. Math. Soc., Vol. 65, 1986. | MR | Zbl
,[23] Nonlinear Functional Analysis, Gordon and Breach, New York, 1969. | MR | Zbl
,[24] Global Connectivity by Time-Like Geodesics, Z. Natureforsch, Vol. 22 a, 1970, pp. 1356-1360. | MR | Zbl
,[25] Homologie singulière des espaces fibres, Ann. Math., Vol. 54, 1951, pp. 425- 505. | MR | Zbl
,[26] Existence of Closed Time-Like Geodesics in Lorentz Spaces, Proc. Am. Math. Soc., Vol. 76, 1979, pp. 145-147. | Zbl
,[27] A Morse Theory for Geodesics on a Lorentz Manifold, Topology, Vol. 14, 1975, pp. 69-90. | MR | Zbl
,[28] The Homology Theory of the Closed Geodesic Problem, J. Diff. Geom., Vol. 11, 1979, pp. 633-644. | MR | Zbl
and ,