Integral representation of nonconvex functionals defined on measures
Annales de l'I.H.P. Analyse non linéaire, Volume 9 (1992) no. 1, p. 101-117
@article{AIHPC_1992__9_1_101_0,
     author = {Bouchitte, Guy and Buttazzo, Giuseppe},
     title = {Integral representation of nonconvex functionals defined on measures},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {9},
     number = {1},
     year = {1992},
     pages = {101-117},
     zbl = {0757.49012},
     mrnumber = {1151468},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1992__9_1_101_0}
}
Bouchitté, G.; Buttazzo, G. Integral representation of nonconvex functionals defined on measures. Annales de l'I.H.P. Analyse non linéaire, Volume 9 (1992) no. 1, pp. 101-117. http://www.numdam.org/item/AIHPC_1992__9_1_101_0/

[1] L. Ambrosio & G. Buttazzo, Weak lower semicontinuous envelope of functionals defined on a space of measures. Ann. Mat. Pura Appl., Vol. 150, 1988, pp. 311-340. | Zbl 0648.49009

[2] G. Bouchitté, Représentation intégrale de fonctionnelles convexes sur un espace de mesures. Ann. Univ. Ferrara, Vol. 33, 1987, pp. 113-156. | MR 958390 | Zbl 0721.49041

[3] G. Bouchitté & G. Buttazzo, New lower semicontinuity results for non convex functionals defined on measures. Nonlinear Anal., Vol. 15, 7, 1990, pp. 679-692. | Zbl 0736.49007

[4] G. Bouchitié & M. Valadier, Integral representation of convex functionals on a space of measures. J. Funct. Anal., Vol. 80, 1988, pp. 398-420. | Zbl 0662.46009

[5] G. Bouchitté & M. Valadier, Multifonctions s.c.i. et régularisée s.c.i. essentielle. Proceedings "Congrès Franco-Québécois d'Analyse Non linéaire Appliquée", Perpignan, June 22-26, 1987, in "Analyse Non linéaire - Contribution en l'Honneur de J. J. Moreau", Bordas, Paris, 1989, pp. 123-149. | Numdam | Zbl 0704.49017

[6] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Res. Notes Math. Ser., Vol. 207, Longman, Harlow, 1989. | MR 1020296 | Zbl 0669.49005

[7] G. Buttazzo & G. Dal Maso, On Nemyckii operators and integral representation of local functionals. Rend. Mat., Vol. 3, 1983, pp. 491-509. | Zbl 0536.47027

[8] E. De Giorgi, L. Ambrosio & G. Buttazzo, Integral representation and relaxation for functionals defined on measures. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Vol. 81, 1987, pp. 7-13. | MR 1000018 | Zbl 0713.49018

[9] F. Demengel & R. Temam, Convex functions of measures and applications. Indiana Univ. Math. J., 33, 1984, pp. 673-709. | MR 756154 | Zbl 0581.46036

[10] N. Dunford & J.T. Schwartz, Linear Operators. Interscience Publishers Inc., New York, 1957. | Zbl 0084.10402

[11] C. Goffman & J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J., Vol. 31, 1964, pp. 159-178. | Zbl 0123.09804

[12] F. Hiai, Representation of additive functionals on vector valued normed Köthe spaces. Kodai Math. J., Vol. 2, 1979, pp. 300-313. | MR 553237 | Zbl 0431.46025

[13] A.D. Ioffe, On lower semicontinuity of integral functionals I. II. SIAM J. Control Optim., Vol. 15, 1977, pp. 521-538 nd 991-1000. | MR 637234 | Zbl 0361.46037

[14] R.T. Rockafellar, Integrals which are convex functionals I. II. Pacific J. Math., Vol. 24, 1968, pp. 525-539 and Vol. 39, 1971, pp. 439-469. | MR 236689 | Zbl 0159.43804

[15] R.T. Rockafellar, Convex Analysis . Princeton University Press, Princeton, 1972. | MR 1451876 | Zbl 0193.18401

[16] M. Valadier, Closedness in the weak topology of the dual pair L1, C. J. Math. Anal. Appli., Vol. 69, 1979, pp. 17-34. | MR 535279 | Zbl 0412.46040