@article{AIHPC_1992__9_2_187_0, author = {Ambrosetti, A. and Coti-Zelati, V.}, title = {Closed orbits of fixed energy for a class of {N-body} problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {187--200}, publisher = {Gauthier-Villars}, volume = {9}, number = {2}, year = {1992}, mrnumber = {1160848}, zbl = {0757.70007}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1992__9_2_187_0/} }
TY - JOUR AU - Ambrosetti, A. AU - Coti-Zelati, V. TI - Closed orbits of fixed energy for a class of N-body problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 1992 SP - 187 EP - 200 VL - 9 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1992__9_2_187_0/ LA - en ID - AIHPC_1992__9_2_187_0 ER -
%0 Journal Article %A Ambrosetti, A. %A Coti-Zelati, V. %T Closed orbits of fixed energy for a class of N-body problems %J Annales de l'I.H.P. Analyse non linéaire %D 1992 %P 187-200 %V 9 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1992__9_2_187_0/ %G en %F AIHPC_1992__9_2_187_0
Ambrosetti, A.; Coti-Zelati, V. Closed orbits of fixed energy for a class of N-body problems. Annales de l'I.H.P. Analyse non linéaire, Volume 9 (1992) no. 2, pp. 187-200. http://archive.numdam.org/item/AIHPC_1992__9_2_187_0/
[1] Closed Orbits of Fixed Energy for Singular Hamiltonian Systems, Archive Rat. Mech. Analysis, Vol. 112, 1990, pp. 339-362. | MR | Zbl
and ,[2] Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Analysis, Vol. 14, 1973, pp. 349-381. | MR | Zbl
and ,[3] Solutions of the Three-Body Problem via Critical Points at Infinity, preprint.
and ,[4] ZELATI, Symmetries and Non-Collision Closed Orbits for Planar N-Body Type Problems, J. Nonlin. Analysis TMA (to appear). | Zbl
and[5] Periodic Solutions for N-Body Type Problems, Ann. Inst. H. Poincaré Anal. Nonlinéaire, Vol. 7-5, 1990, pp. 477-492. | Numdam | MR | Zbl
,