Singular minimisers in the calculus of variations : a degenerate form of cavitation
Annales de l'I.H.P. Analyse non linéaire, Tome 9 (1992) no. 6, pp. 657-681.
@article{AIHPC_1992__9_6_657_0,
     author = {Sivaloganathan, J.},
     title = {Singular minimisers in the calculus of variations : a degenerate form of cavitation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {657--681},
     publisher = {Gauthier-Villars},
     volume = {9},
     number = {6},
     year = {1992},
     mrnumber = {1198308},
     zbl = {0769.49030},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1992__9_6_657_0/}
}
TY  - JOUR
AU  - Sivaloganathan, J.
TI  - Singular minimisers in the calculus of variations : a degenerate form of cavitation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1992
SP  - 657
EP  - 681
VL  - 9
IS  - 6
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1992__9_6_657_0/
LA  - en
ID  - AIHPC_1992__9_6_657_0
ER  - 
%0 Journal Article
%A Sivaloganathan, J.
%T Singular minimisers in the calculus of variations : a degenerate form of cavitation
%J Annales de l'I.H.P. Analyse non linéaire
%D 1992
%P 657-681
%V 9
%N 6
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1992__9_6_657_0/
%G en
%F AIHPC_1992__9_6_657_0
Sivaloganathan, J. Singular minimisers in the calculus of variations : a degenerate form of cavitation. Annales de l'I.H.P. Analyse non linéaire, Tome 9 (1992) no. 6, pp. 657-681. http://archive.numdam.org/item/AIHPC_1992__9_6_657_0/

[1] J.M. Ball, Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity, Phil. Trans. Roy. Soc. London., Vol. A306, 1982, pp. 557-611. | MR | Zbl

[2] J.M. Ball and F. Murat, W1,p-Quasiconvexity and Variational Problems for Multiple Integrals, J. Funct. Anal., Vol. 58, 1984, pp.225-253. | MR | Zbl

[3] J.M. Ball, J.C. Currie and P.J. Olver, Null Lagrangians, Weak Continuity and Variational Problems of Arbitrary Order, J. Funct. Anal., Vol. 41, 1981, pp. 135-174. | MR | Zbl

[4] H. Brezis, J. Coron and E. Lieb, Harmonic Maps with Defects, Comm. Math. Phys., Vol. 107, 1986, pp. 649-705. | MR | Zbl

[5] H. Brezis, Sk-valued maps with singularities, Montecatini Lecture Notes, Springer, 1988. | MR | Zbl

[6] D.G. Edelen, The null set of the Euler-Lagrange Operator, Arch. Ration. Mech. Anal., Vol. 11, 1962, pp. 117-121. | MR | Zbl

[7] L.C. Evans, Quasiconvexity and Partial Regularity in the Calculus of Variations, Arch. Ration. Mech. Anal., Vol. 95, 1986, pp. 227-252. | MR | Zbl

[8] N. Fusco and J. Hutchinson, Partial Regularity of Functions Minimising Quasiconvex Integrals, Manuscripta Math., Vol. 54, 1985, pp. 121-143. | MR | Zbl

[9] A.N. Gent and P.B. Lindley, Internal Rupture of Bonded Rubber Cylinders in Tension, Proc. Roy. Soc. London, Vol. A249, 1958, pp. 195-205.

[10] R. Hardt, D. Kinderlehrer and F.H. Lin, Existence and Partial Regularity of Static Liquid Crystal Configurations, Commun. Math. Phys., Vol. 105, 1986, pp. 541-570. | MR | Zbl

[11] F. Helein, Applications harmoniques et applications minimisantes entre variétés Riemanniennes, Thèse de Doctorat, École Polytechnique, 1989.

[12] C.O. Horgan and R. Abeyaratne, A Bifurcation Problem for a Compressible Nonlinearly Elastic Medium: Growth of a Microvoid, J. Elasticity, Vol. 16, 1986, pp. 189-200. | MR | Zbl

[13] R.D. James and S.J. Spector, The Formation of Filamentary Voids in Solids, J. Mech. Phys. Sol., Vol. 39, 1991, pp. 783-813. | MR | Zbl

[14] F.H. Lin, Une remarque sur l'application x/|x|, C.R. Acad. Sci. Paris, T. 305, Series I, 1987, pp. 529-531. | Zbl

[15] S. Muller, Higher Integrability of Determinants and Weak Convergence in L1, J. reine angew. Math., Vol. 412, 1990, pp. 20-34. | MR | Zbl

[16] P.J. Olver and J. Sivaloganathan, The Structure of Null Lagrangians, Nonlinearity, Vol. 1, 1988, pp. 389-398. | MR | Zbl

[17] R. Osserman, The Isoperimetric Inequality, Bull. Amer. Math. Soc., Vol. 84, 1978, pp. 1182-1238. | MR | Zbl

[18] K.A. Pericak-Spector and S.J. Spector, Nonuniqueness for a Hyperbolic System: Cavitation in Nonlinear Elastodynamics, Arch. Ration. Mech. Anal., Vol. 101, 1988, pp. 293-317. | MR | Zbl

[19] P. Podio-Guidugli, G. Vergara Caffarelli and E.G. Virga, Discontinuous Energy Minimisers in Nonlinear Elastostatics: an Example of J. Ball Revisited, J. Elasticity, Vol. 16, 1986, pp. 75-96. | MR | Zbl

[20] Polya and Szego, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, 1951. | MR | Zbl

[21] J. Sivaloganathan, Uniqueness of Regular and Singular Equilibria for Spherically Symmetric Problems of Nonlinear Elasticity, Arch. Ration. Mech. Anal., Vol. 96, 1986, pp. 97-136. | MR | Zbl

[22] J. Sivaloganathan, A Field Theory Approach to Stability of Equilibria in Radial Elasticity, Math. Proc. Camb. Phil. Soc., Vol. 99, 1986, pp. 589-604. | MR | Zbl

[23] J. Sivaloganathan, The Generalised Hamilton-Jacobi Inequality and the Stability of Equilibria in Nonlinear Elasticity, Arch. Ration. Mech. Anal., Vol. 107, No. 4, 1989, pp. 347-369. | MR | Zbl

[24] J. Sivaloganathan, in preparation.

[25] S. Spector, Linear Deformations as Minimisers of the Energy, preprint.

[26] C.A. Stuart, Radially Symmetric Cavitation for Hyperelastic Materials, Ann. Inst. Henri Poincaré: Analyse non linéaire, Vol. 2, 1985, pp. 33-66. | Numdam | MR | Zbl

[27] C.A. Stuart, Estimating the Critical Radius for Radially Symmetric Cavitation, preprint E.P.F.L. Lausanne, 1991. | MR

[28] F. Meynard, Cavitation dans un milieu hyperélastique, Thèse de Doctorat, École Polytechnique Fédérale de Lausanne, 1990.