Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary
Annales de l'I.H.P. Analyse non linéaire, Tome 12 (1995) no. 2, pp. 155-171.
@article{AIHPC_1995__12_2_155_0,
     author = {Bandle, Catherine and Marcus, Moshe},
     title = {Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {155--171},
     publisher = {Gauthier-Villars},
     volume = {12},
     number = {2},
     year = {1995},
     mrnumber = {1326666},
     zbl = {0840.35033},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1995__12_2_155_0/}
}
TY  - JOUR
AU  - Bandle, Catherine
AU  - Marcus, Moshe
TI  - Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1995
SP  - 155
EP  - 171
VL  - 12
IS  - 2
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1995__12_2_155_0/
LA  - en
ID  - AIHPC_1995__12_2_155_0
ER  - 
%0 Journal Article
%A Bandle, Catherine
%A Marcus, Moshe
%T Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary
%J Annales de l'I.H.P. Analyse non linéaire
%D 1995
%P 155-171
%V 12
%N 2
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1995__12_2_155_0/
%G en
%F AIHPC_1995__12_2_155_0
Bandle, Catherine; Marcus, Moshe. Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary. Annales de l'I.H.P. Analyse non linéaire, Tome 12 (1995) no. 2, pp. 155-171. http://archive.numdam.org/item/AIHPC_1995__12_2_155_0/

[1] C. Bandle and M. Essèn, On the Solutions of Quasilinear Elliptic problems with Boundary Blow-up, Symposia Matematica, Vol. 35, 1994, pp. 93-111. | MR | Zbl

[2] C. Bandle C. and M. MARCUS M., Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour, J. d' Anal. Mathém., Vol. 58, 1992, pp. 9-24. | MR | Zbl

[3] E.B. Dynkin, A probabilistic approach to one class of nonlinear differential equations, Probab. Theory Rel. Fields, Vol. 90, 1991, pp. 89-115. | MR | Zbl

[4] J.B. Keller, On solutions of Δu = f(u), Comm. Pure Appl. Math., Vol. 10, 1957, pp. 503-510. | MR | Zbl

[5] C. Loewner and L. Nirenberg, Partial differential invariant under conformal or projective transformations, Contributions to Analysis (L. Ahlfors ed.), Acad. Press N. Y., 1974, pp. 245-272. | MR | Zbl

[6] M. Marcus, On solutions with blow-up at the boundary for a class of semilinear elliptic equations, Developments in Partial Differential Equations and Applications (Buttazzo et al ed.), Plenum Press, 1992, pp. 65-79. | MR | Zbl

[7] L. Véron, Semilinear elliptic equations with uniform blow-up on the boundary, J. d' Anal. Mathém., Vol. 58, 1992. | MR | Zbl