@article{AIHPC_1995__12_5_507_0, author = {Urbas, John}, title = {Nonlinear oblique boundary value problems for hessian equations in two dimensions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {507--575}, publisher = {Gauthier-Villars}, volume = {12}, number = {5}, year = {1995}, mrnumber = {1353259}, zbl = {0841.35042}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1995__12_5_507_0/} }
TY - JOUR AU - Urbas, John TI - Nonlinear oblique boundary value problems for hessian equations in two dimensions JO - Annales de l'I.H.P. Analyse non linéaire PY - 1995 SP - 507 EP - 575 VL - 12 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1995__12_5_507_0/ LA - en ID - AIHPC_1995__12_5_507_0 ER -
%0 Journal Article %A Urbas, John %T Nonlinear oblique boundary value problems for hessian equations in two dimensions %J Annales de l'I.H.P. Analyse non linéaire %D 1995 %P 507-575 %V 12 %N 5 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1995__12_5_507_0/ %G en %F AIHPC_1995__12_5_507_0
Urbas, John. Nonlinear oblique boundary value problems for hessian equations in two dimensions. Annales de l'I.H.P. Analyse non linéaire, Tome 12 (1995) no. 5, pp. 507-575. http://archive.numdam.org/item/AIHPC_1995__12_5_507_0/
[1] The Dirichlet problem for nonlinear second order elliptic equations I. Monge-Ampère equation, Comm. Pure Appl. Math., Vol. 37, 1984, pp. 369-402. | MR | Zbl
, and ,[2] The Dirichlet problem for nonlinear second order elliptic equations III. Functions of the eigenvalues of the Hessian, Acta Math., Vol. 155, 1985, pp. 261-301. | MR | Zbl
, and ,[3] On the regularity of the Monge-Ampère equation det (∂2u ∂xi∂xj) = F(x,u), Comm. Pure Appl. Math., Vol. 30, 1977, pp. 41-68. | MR | Zbl
and ,[4] Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator, Ann. Inst. Henri Poincarè, Analyse Non Linèaire, Vol. 8, 1991, pp. 443-457. | Numdam | MR | Zbl
,[5] Elliptic partial differential equations of second order, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, Second edition, 1983. | MR | Zbl
and ,[6] Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI), Vol. 131, 1983, pp. 72-79. | MR | Zbl
,[7] Two-dimensional nonlinear boundary value problems for elliptic equations, Trans. Amer. Math. Soc., Vol. 300, 1987, pp. 287-295. | MR | Zbl
,[8] Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. Amer. Math. Soc., Vol. 295, 1986, pp. 509-546. | MR | Zbl
and ,[9] Sur les équations de Monge-Ampère I, Manuscripta Math., Vol. 41, 1983, pp. 1-44. | MR | Zbl
,[10] The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 539-563. | MR | Zbl
, and ,[11] Monge-Ampère equations of elliptic type, Groningen, Noordhoff, 1964. | MR | Zbl
,[12] The Minkowski multidimensional problem, J. Wiley, New York, 1978.
,[13] On degenerate fully nonlinear elliptic equations in balls, Bull. Aust. Math. Soc., Vol. 35, 1987, pp. 299-307. | MR | Zbl
,[14] The Dirichlet problem for the prescribed curvature equations, Arch. Rat. Mech. Anal., Vol. 111, 1990, pp. 153-179. | MR | Zbl
,[15] The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Aust. Math. Soc., Vol. 28, 1983, pp. 217-231. | MR | Zbl
and ,[16] The oblique derivative problem for equations of Monge-Ampère type, Proceedings of the Centre for Mathematical Analysis, Australian National University, Vol. 12, 1987, pp. 171-195. | MR | Zbl
,[17] On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations, Indiana Univ. Math. J., Vol. 39, 1990, pp. 355-382. | MR | Zbl
,