@article{AIHPC_1996__13_2_135_0, author = {Ancona, Fabio}, title = {Decomposition of homogeneous vector fields of degree one and representation of the flow}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {135--169}, publisher = {Gauthier-Villars}, volume = {13}, number = {2}, year = {1996}, mrnumber = {1378464}, zbl = {0843.34007}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1996__13_2_135_0/} }
TY - JOUR AU - Ancona, Fabio TI - Decomposition of homogeneous vector fields of degree one and representation of the flow JO - Annales de l'I.H.P. Analyse non linéaire PY - 1996 SP - 135 EP - 169 VL - 13 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1996__13_2_135_0/ LA - en ID - AIHPC_1996__13_2_135_0 ER -
%0 Journal Article %A Ancona, Fabio %T Decomposition of homogeneous vector fields of degree one and representation of the flow %J Annales de l'I.H.P. Analyse non linéaire %D 1996 %P 135-169 %V 13 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1996__13_2_135_0/ %G en %F AIHPC_1996__13_2_135_0
Ancona, Fabio. Decomposition of homogeneous vector fields of degree one and representation of the flow. Annales de l'I.H.P. Analyse non linéaire, Tome 13 (1996) no. 2, pp. 135-169. http://archive.numdam.org/item/AIHPC_1996__13_2_135_0/
[1] Local invariants of smooth control systems, Acta Applicandae Mathematicae, Vol. 14, 1989, pp. 191-237. | MR | Zbl
, and ,[2] Homogeneous normal forms for vector fields with respect to an arbitrary dilation, Ph. D. Dissertation, University of Colorado, Boulder, December 1993.
,[3] Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1982. | Zbl
,[4] Graded approximations and controllability along a trajectory, SIAM J. Control Optim., Vol. 28, 1990, pp. 903-924. | MR | Zbl
and ,[5] Local asymptotic approximations of nonlinear control systems, Internat. J. Control., Vol. 41, 1985, pp. 1331-1336. | MR | Zbl
,[6] Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math., Vol. 85, 1963, pp. 693-722. | MR | Zbl
,[7] A simple global characterization for normal forms of singular vector fields, Physica, Vol. 29D, 1987, pp. 85-127. | Zbl
, , , and ,[8] Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., Springer-Verlag, New York, Heidelberg, Berlin, 1983. | MR | Zbl
and ,[9] Nilpotent approximations of control systems and distributions, SIAM J. Control Optim., Vol. 24, 1986, pp. 731-736. | MR | Zbl
,[10] Homogeneous coordinates and continuous asymptotically stabilizing feedback controls, in: Differential Equations, Stability and Control (S. Elaydi, Ed.), Lecture Notes in Pure and Applied Mathematics, Vol. 127, pp. 249-260, Dekker, New York, 1991. | MR | Zbl
,[11] Asymptotically stabilizing feedback controls and the nonlinear regulator problem, SIAM J. Control Optim., Vol. 29, 1991, pp. 185-196. | MR | Zbl
,[12] Nilpotent and higher order approximations of vector field systems, SIAM Review, Vol. 33, 1991, pp. 238-264. | MR | Zbl
,[13] Asymptotically stabilizing feedback controls, J. Diff. Eqns., Vol. 92, 1991, pp. 76-89. | MR | Zbl
,[14] Resonance and continuous asymptotically stabilizing feedback controls, Proc. IFAC NOLCOS 95 (to appear). | MR
,[15] Introduction to Lie algebras and Representation Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1972. | MR | Zbl
,[16] Stabilization of nonlinear systems in the plane, System Control Lett., Vol. 12, 1989, pp. 169-175. | MR | Zbl
,[17] Applications of Lie groups to Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1993. | MR | Zbl
,[18] Hypoelliptic differential operators and nilpotent groups, Acta Math., Vol. 137, 1976, pp. 247-320. | MR | Zbl
and ,[19] Polynomial approximations to control systems and local controllability, Proc. 24th IEEE Conference on Decision and Control, Vol. I, 1985, pp. 33-38.
,[20] A general theorem on local controllability, SIAM J. Control Optim., Vol. 25, 1987, pp. 158-194. | MR | Zbl
,[21] Center manifolds, normal forms and elementary bifurcations, in Dynamics Reported, U. Kirchgraber and H. O. Walther Ed., Vol. 2, pp. 89-169, Teubner, Stuttgart and Wiley, Chichester, 1989. | MR | Zbl
,[22] Nonsemisimple 1 : 1 resonance at an equilibrium, Cel. Mech., Vol. 27, 1982, pp. 131-149. | MR | Zbl
,[23] The Hamiltonian-Hopf Bifurcation, Lecture Notes in Math., Vol. 1160, Springer-Verlag, New York, Heidelberg, Berlin, 1985. | MR | Zbl
,[24] Lie Groups, Lie Algebras and Their Representations, Springer-Verlag, New York, Heidelberg, Berlin, 1984. | MR | Zbl
,