F. PLANCHON

Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in \mathbb{R}^3

Annales de l'I. H. P., section C, tome 13, nº 3 (1996), p. 319-336

<http://www.numdam.org/item?id=AIHPC_1996__13_3_319_0>

© Gauthier-Villars, 1996, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Vol. 13, n° 3, 1996, p. 319-336

Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in \mathbb{R}^3

by

F. PLANCHON

Centre de Mathématiques, U.R.A. 169 du C.N.R.S., Ecole Polytechnique, F-91128 Palaiseau Cedex

ABSTRACT. – We construct global strong solutions of the Navier-Stokes equations with sufficiently oscillating initial data. We will show that the condition is for the norm in some Besov space to be small enough.

RÉSUMÉ. – Nous construisons des solutions fortes globales des équations de Navier-Stokes, pour des données initiales suffisamment oscillantes. Cette condition se traduit en terme de norme petite dans un certain espace de Besov.

INTRODUCTION

We are interested in the following system, for $x \in \mathbb{R}^3$ and t > 0,

(1)
$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla) \ u = \nu \Delta u - \nabla p \\ \nabla \cdot u = 0, \end{cases}$$

with initial data $u(x,0) = u_0(x)$. For the sake of simplicity, we suppose that $\nu = 1$; a simple rescaling allows us to obtain any other value. Local

existence and uniqueness in the Sobolev space $H^s(\mathbb{R}^3)$ and the Lebesgue space $L^p(\mathbb{R}^3)$ are known, if s > 1/2 and p > 3 (see [4]). We have global solutions for small initial data in $L^3(\mathbb{R}^3)$ (see [9] or [4]) and $H^{\frac{1}{2}}(\mathbb{R}^3)$ (see [4] and [5]), or in $L^2(\mathbb{R}^3) \cap L^p(\mathbb{R}^3)$, with p > 3 (see [1]). We shall extend the results of [4], for s > 1/2 and p > 3. By adapting the auxiliary spaces used in [4], we shall prove the existence and uniqueness of global solutions in $H^s(\mathbb{R}^3)$ provided the initial data are small in a sense which will be made precise later, and in $L^p(\mathbb{R}^3)$ up to additional conditions on u_0 . Let us define the homogeneous Besov spaces $\dot{B}^{\alpha}_{p,q}$:

DEFINITION 1. – Let us choose $\phi \in S(\mathbb{R}^n)$ a radial function so that $Supp \ \hat{\phi} \subset \{|\xi| < 1 + \varepsilon\}$, and $\hat{\phi}(\xi) = 1$ for $|\xi| < 1$. Define $\phi_j(x) = 2^{nj}\phi(2^jx)$, S_j the convolution operator with ϕ_j , and $\Delta_j = S_{j+1} - S_j$. Let $f \in S'(\mathbb{R}^n)$, $\alpha \in \mathbb{R}$, $1 < p, q \leq +\infty$, $f \in \dot{B}_{p,q}^{\alpha}$ if and only if

$$\left[\sum_{-\infty}^{+\infty} (2^{j\alpha} \|\Delta_j f\|_{L^p})^q\right]^{\frac{1}{q}} < +\infty.$$

The reader should consult [12], [2], or [16] where the properties of Besov spaces are exposed in detail. Let us see how homogeneous Besov spaces arise. If we want to construct a global solution, it is useful to control a norm remaining invariant by the rescaling $f(x) \rightarrow \lambda f(\lambda x)$. If this can be achieved in a Besov space with $\alpha < 0$ and therefore bigger than the usual space where we want to obtain a solution, we will have weaker assumptions on u_0 .

Let us give the results in the case of Sobolev spaces. BC denotes the class of bounded continuous functions.

THEOREM 1. – There exists an universal constant $\beta > 0$ such that, if $s > \frac{1}{2}$, $u_0 \in H^s(\mathbb{R}^3)$, $\nabla \cdot u_0 = 0$ and

(2)
$$\| u \|_{\dot{B}^{-1/4}_{4,\infty}} < \beta,$$

then there exists a unique solution u of (1) such that

(3)
$$u \in BC([0,\infty), H^s(\mathbb{R}^3)).$$

Moreover, the following properties hold for u:

• $|| u(\cdot,t) ||_{L^2}$ is decreasing, and for every t > 1,

(4)
$$\| u(\cdot,t) - e^{t\Delta}u_0 \|_{L^2} \leq \frac{C(\beta,u_0)}{t^{1/4}}.$$

• For every t > 1,

(5)
$$\| (-\Delta)^{s/2} u(\cdot, t) \|_{L^2} \leq \frac{C(\beta, u_0, s)}{t^{s/2}}$$

• For every t > 0,

(6)
$$\| u(\cdot,t) \|_{\infty} \leq \frac{C(\beta,u_0)}{\sqrt{t}}.$$

• If $s \in (1, 3/2]$, for every t < 1,

(7)
$$\| u(\cdot,t) - e^{t\Delta}u_0 \|_{\infty} \leq C(\beta,u_0).$$

Note that the space $\dot{B}_{4,\infty}^{-1/4}$ is invariant under the scaling $f(x) \to \lambda f(\lambda x)$, and $\dot{H}^{\frac{1}{2}} \subset \dot{B}_{4,\infty}^{-1/4}$. It is very interesting that we do not need a small $H^{\frac{1}{2}}$ norm to obtain a global solution (*see* [4]). On the other hand, if we want to include the case 1/2, u is unique in the space

$$\begin{cases} u \in BC([0, +\infty), H^{\frac{1}{2}}) \\ t^{1/8}u(\cdot, t) \in BC([0, +\infty), L^{4}) \\ \lim_{t \to 0} t^{1/8} ||u||_{L^{4}} = 0. \end{cases}$$

which was used in [4], the starting point of the present work. The weak condition (2) is the only remaining obstacle to the problem of existence of global smooth solutions to the Navier-Stokes equations, and we remark that β does not depend on s. The decay estimates (4) can be found in [8], in a slightly different context. We recall it here as a natural consequence of the construction of u.

In the Lebesgue spaces, the analogue is

THEOREM 2. – Let p > 3/2, there exists $\delta(p) > 0$ such that, if $u_0 \in L^p \cap \dot{B}_{2p,\infty}^{-(1-\frac{3}{2p})}$, $\nabla \cdot u_0 = 0$ and

(8)
$$|| u_0 ||_{\dot{B}_{2p,\infty}^{-(1-\frac{3}{2p})}} < \delta(p),$$

then there exists a unique solution u such that

$$\begin{cases} u \in BC([0, +\infty), L^p) \\ t^{\frac{1}{2} - \frac{3}{4p}} u(\cdot, t) \in BC([0, +\infty), L^{2p}) \\ \lim_{t \to 0} t^{\frac{1}{2} - \frac{3}{4p}} \|u\|_{L^{2p}} = 0. \end{cases}$$

The restriction p > 3/2 is due to technical considerations, and we could probably obtain 1 instead of 3/2, by slightly modifying the Besov space involved.

PROPOSITION 1. – The constant $\delta(p)$ satisfies:

$$\lim_{p \to +\infty} \delta(p) = 0,$$
$$\lim_{p \to 3/2} \delta(p) = 0.$$

PROPOSITION 2. – In Theorem 2, we can replace $u_0 \in L^p \cap \dot{B}_{2p,\infty}^{-(1-\frac{3}{2p})}$ by $u_0 \in L^p \cap L^3$, and if p > 3 by $L^2 \cap L^p$.

If $u_0 \in H^s$, $s \ge 1/2$, then as $\dot{H}^{\frac{1}{2}} \subset \dot{B}_{4,\infty}^{-1/4}$, we have a natural candidate for the useful Besov space. On the contrary, if we take L^p , we may use two different Besov spaces: the first one is $\dot{B}_{2p,\infty}^{-\frac{3}{2p}}$, as $L^p \subset \dot{B}_{2p,\infty}^{-\frac{3}{2p}}$. But this space is not invariant by the rescaling. The "right" space is $\dot{B}_{2p,\infty}^{-(1-\frac{3}{2p})}$, but unfortunately $L^p \not\subset \dot{B}_{2p,\infty}^{-(1-\frac{3}{2p})}$. This explains the additional condition imposed on u_0 in Theorem 2. Both spaces coincide only when $1 - \frac{3}{2p} = \frac{3}{2p}$, which means p = 3. The reader should refer to [9] and [4] for details.

Proofs. – We first reformulate the problem in order to obtain an integral equation for u. This is standard practice, and was first employed by Kato and Fujita (*see* [10] [11]), and very often used since (*see* [7] [6] [15]). All these authors use semi-group theory, but in the present case, we do not need this formalism, for the exact expression of the heat kernel in \mathbb{R}^3 allows us to obtain directly the estimates we need (*see* [9]). Let \mathbb{P} be the projection operator from $(L^2(\mathbb{R}^3))^3$ onto the subspace of divergence-free vectors, denoted by $\mathbb{P}L^2$, and R_j the Riesz transform with symbol $\frac{\xi_j}{|\xi|}$. We easily see that

(9)
$$\mathbb{P}\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} = \begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} - \begin{pmatrix}R_1\sigma\\R_2\sigma\\R_3\sigma\end{pmatrix}$$

where $\sigma = \sum_{j} R_{j} u_{j}$. It is well-known that \mathbb{P} can be extended to a bounded operator from $(L^{p})^{3}$ onto $\mathbb{P}L^{p}$, $1 , and from <math>(H^{s})^{3}$ onto $\mathbb{P}H^{s}$, $s \geq 0$. Note that \mathbb{P} commutes with $S(t) = e^{t\Delta}$, whereas on an open set Ω , we need to introduce the Stokes operator $-\mathbb{P}\Delta$ and the associated semi-group. Note that

$$\operatorname{Ker} \mathbb{P} = \{ u \,|\, \exists \phi \text{ such that } u = \nabla \phi \}.$$

322

Using \mathbb{P} , (1) becomes an evolution equation

(10)
$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u - \mathbb{P}\nabla \cdot (u \otimes u), \\ \nabla \cdot u = 0, \\ u(x,0) = u_0(x). \end{cases}$$

We replace $(u \cdot \nabla)u$ by $\nabla \cdot (u \otimes u)$ to avoid problems of definition, and this is possible only because $\nabla \cdot u = 0$. It is then standard to study (10) via the corresponding integral equation

(11)
$$u(x,t) = S(t)u_0(x) - \int_0^t \mathbb{P}S(t-s)\nabla \cdot (u \otimes u)(x,s)ds$$

in a space of divergence free vectors. The integral should be seen as a Bochner integral. In the general case of evolution equations, a solution of (11) might not be a solution of (10). However, in the case of the Navier-Stokes equations without external forces, it is true without any extra assumptions. Actually, the solutions of (11) are $C^{\infty}((0, +\infty) \times \mathbb{R}^3)$ and verify the equations (1) in the classical sense, as we recover easily the pressure up to a constant by

(12)
$$-\Delta p = \sum_{i,j} \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i}.$$

The reader should refer to [7] [10] or [13] for proofs. We remark that since a solution of (1) is necessarily a solution of (11), uniqueness for (11) guarantees uniqueness for (1). We aim to solve (11) by successive approximations, with the following lemma:

LEMMA 1. – Let E and F be two Banach functional spaces, endowed with the norms $\|\cdot\|=\|\cdot\|_E$ and $|\cdot|=\|\cdot\|_F$, B a continuous bilinear operator from $F \times F \to E$ and $F \times F \to F$:

$$|| B(u, v) || \le \eta | u || v |$$

| B(u, v) | \le \gamma | u || v |,

and define the sequence $X_0 = 0$, $X_{n+1} = Y + B(X_n, X_n)$, where Y belongs to E and to F. If

then the sequence converges in both spaces E and F, and the limit X sastisfies

(14)
$$X = Y + B(X, X)$$

and

$$(15) |X| < 2 |Y|.$$

The proof is left to the reader. Note that the value of η has no influence on the convergence. Now we have to study the following bilinear operator

(16)
$$B(u,v) = \int_0^t \mathbb{P}S(t-s)\nabla \cdot (u \otimes u) ds.$$

In order to simplify the notations, we limit ourselves to the following scalar operator

(17)
$$B(f,g) = \int_0^t \frac{1}{(t-s)^2} \theta\left(\frac{\cdot}{(t-s)^2}\right) * fg(s)ds.$$

As $\mathbb{P}S(t-s)\nabla \cdot$ is a matrix of convolution operators, the components are all operators like (17), with

(18)
$$e^{|\xi|^2}\hat{\theta}(\xi) = \frac{\xi_j \xi_k \xi_l}{|\xi|^2}$$
 (with a $-\xi_j$ on the diagonal).

LEMMA 2. $-\theta(x) \in C^{\infty}(\mathbb{R}^3)$ and $\theta \in L^1 \cap L^{\infty}$.

This can be easily seen on the Fourier transform of θ .

In what follows, C denotes a constant which may vary from one line to another.

Proof of Theorem 1

PROPOSITION 3. – Let $1/2 < s \leq 3/4$, then there exists a solution u of (11) such that

(19)
$$\begin{cases} u \in BC([0, +\infty), \dot{H}^s) = E, \\ \omega(t)u(x, t) \in BC([0, +\infty), L^4) = F, \end{cases}$$

where $\omega(t) = t^{3/8 - s/2}$ if 0 < t < 1 and $\omega(t) = t^{1/8}$ if $t \ge 1$.

Annales de l'Institut Henri Poincaré - Analyse non linéaire

324

We want to apply Lemma (1) where E and F are defined by the norms

$$\| u \| = \sup_{t} \| u \|_{\dot{H}^{s}}$$
$$| u | = \sup_{t} \omega(t) \| u \|_{L^{4}}.$$

If we use Hölder and Young inequalities for B(f,g), Λ being the operator with symbol $|\xi|$,

(20)
$$\|\Lambda^{s}B(f,g)(t)\|_{L^{2}} \leq \|\theta\|_{L^{1}} \|f\|\|g\| \int_{0}^{t} \frac{1}{(t-\tau)^{1/2+s/2}\omega^{2}(\tau)} d\tau,$$

(21) $\|B(f,g)(t)\|_{L^{2}} \leq \|\theta\|_{L^{1}} \|f\|\|g\| \int_{0}^{t} \frac{1}{(t-\tau)^{1/2+s/2}\omega^{2}(\tau)} d\tau,$

(21)
$$|| B(f,g)(t) ||_{L^4} \le || \theta ||_{L^{4/3}} |f| || g | \int_0^1 \frac{1}{(t-\tau)^{7/8} \omega^2(\tau)} d\tau.$$

We shall then verify that, for all t > 0,

$$I_{1} = \int_{0}^{t} \frac{1}{(t-\tau)^{1/2+s/2} \omega^{2}(\tau)} d\tau < +\infty,$$

$$I_{2} = \int_{0}^{t} \frac{1}{(t-\tau)^{7/8} \omega^{2}(\tau)} d\tau < +\infty.$$

Easy calculations actually show that for t < 1,

$$I_i < Ct^{s/2-1/4}$$

and for t > 1

(22)
$$I_i < Ct^{1/4-s/2}.$$

The continuity at t = 0 comes from the estimate when t < 1. In order to include the case s = 1/2, we have to impose $\lim_{t\to 0} t^{1/8} \parallel u \parallel_{L^4} = 0$ (see [4]). Note that the constant γ of Lemma 1 is

(23)
$$\gamma = \int_0^1 \frac{\|\theta\|_{L^{4/3}}}{(1-\tau)^{7/8} \tau^{1/4}} d\tau.$$

Therefore, if $S(t)u_0$ satisfies condition (13), we obtain $u \in BC([0, +\infty), \dot{H}^s)$.

PROPOSITION 4. - We have

(24)
$$u \in BC([0, +\infty), L^2).$$

Let $G = BC([0, +\infty), L^2)$; B is bicontinuous from $G \times F$ to G:

(25)
$$|| B(f,g)(t) ||_{L^2} \le |g| \sup_{[0,t]} || f ||_{L^2} || \theta ||_{L^{4/3}} \int_0^t \frac{1}{(t-\tau)^{7/8} \omega(\tau)} d\tau.$$

Let

$$I_{3} = \int_{0}^{t} \frac{\|\theta\|_{L^{4/3}}}{(t-\tau)^{7/8}\omega(\tau)} d\tau,$$

for t < 1, $I_3 < Ct^{s/2-1/4}$, and for all t

$$I_3 \leq \int_0^1 \frac{\|\theta\|_{L^{4/3}}}{(1-\tau)^{7/8} \tau^{7/8}} d\tau = \rho.$$

G being a Banach space, we can use a contraction argument to show that the sequence defined previously converges in *G*. It is sufficient that $2 \mid u \mid \rho < 1$, which is true as $\rho \leq \gamma$ and *u* verifies (15). Therefore, we proved (24) and hence Proposition 3, and shown that $\parallel u(\cdot, t) \parallel_{L^2}$ is uniformly bounded.

We now show (6): the following estimation is verified by the heat kernel,

(26)
$$\sup_{[0,t]} \sqrt{t} \parallel S(t)u_0 \parallel_{\infty} \leq C.$$

We have

$$\| B(f,g)(t) \|_{\infty} \leq \| \theta \|_{L^{4/3}} \int_{0}^{t} \frac{\| f(s) \|_{L^{4}} \| g(s) \|_{\infty}}{(t-s)^{7/8}} ds.$$

Let us denote $W(f,t) = \sup_{[0,t]} \sqrt{t} \parallel f(.,s) \parallel_{\infty}$, then

(27)
$$W(B(f,g),t) \leq |f| W(g,t) || \theta ||_{L^{4/3}} \int_0^t \frac{\sqrt{t}}{(t-s)^{7/8} s^{5/8}} ds.$$

Let

$$I_4 = \int_0^1 \frac{\|\theta\|_{L^{4/3}}}{(1-\mu)^{7/8} \mu^{5/8}} d\mu$$

then, as $I_4 \leq 2\gamma$, we have $2W(S(t)u_0, t)I_4 < 1$. Therefore,

(28)
$$\sup_{[0,t]} \sqrt{t} \parallel u(\cdot,t) \parallel_{\infty} \leq \frac{C}{1 - 2I_4 \parallel S(t)u_0 \parallel}$$

Now we can prove (4) as follows:

$$|| B(f,g)(t) ||_{L^2} \le \int_0^t \frac{C}{(t-s)^{2-\frac{3}{2q}}} || g ||_{L^2} || f ||_{L^{\beta}} ds,$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

326

where

$$\frac{1}{2} = \frac{1}{q} + \frac{1}{2} + \frac{1}{\beta} - 1.$$

If we take q such that $\frac{3}{2q} = 1 + \varepsilon$, $\varepsilon > 0$, using interpolation and (28) we get, for t > 1,

(29)
$$\|f\|_{L^p} \le \|f\|_{L^2}^{\frac{2}{p}} \|f\|_{\infty}^{1-\frac{2}{p}}$$

and

(30)
$$\| B(f,g)(t) \|_{L^{2}} \leq \int_{0}^{t} \frac{C}{(t-s)^{1-\varepsilon}s^{\frac{1}{6}+\frac{2}{3}\varepsilon}} ds$$
$$\| B(f,g)(t) \|_{L^{2}} \leq \frac{C(\varepsilon)}{t^{\frac{1}{6}-\frac{\varepsilon}{3}}}.$$

On the other hand, we know by (26) that $\forall q \geq 2$,

(31)
$$\sup_{[0,t]} t^{\frac{3}{2}(\frac{1}{2} - \frac{1}{q})} \| S(t)u_0 \|_q \le C.$$

Therefore, as u sastisfies (14), we will improve (30) in the following way: let

(32)
$$B_1(f,g) = \int_0^1 \frac{1}{(t-s)^2} \theta\left(\frac{\cdot}{\sqrt{t-s}}\right) * fg(s)ds$$

(33)
$$B_2(f,g) = \int_1^t \frac{1}{(t-s)^2} \theta\left(\frac{\cdot}{\sqrt{t-s}}\right) * fg(s)ds.$$

The term B_1 can be handled very easily, so that $\forall \eta > 0$,

$$|| B_1(f,g)(t) ||_{L^2} \le \frac{C}{t^{1-\eta}}.$$

Now, we split $B_2(u, u)$ in three parts. By (31) we have

$$\begin{split} \|B_2(S(t)u_0,S(t)u_0)\|_{L^2} &\leq \int_1^t \frac{C}{(t-s)^{2-\frac{3}{2q}}s^{\frac{3}{2}(1-\frac{1}{\alpha}-\frac{1}{\beta})}} ds \\ &\leq \frac{C}{t^{1-\frac{3}{2q}+\frac{3}{2}(1-(\frac{3}{2}-\frac{1}{q}))}} \\ &\leq \frac{C}{t^{1/4}}, \end{split}$$

as

328

$$\frac{1}{2} = \frac{1}{\gamma} + \frac{1}{\alpha} + \frac{1}{\beta} - 1.$$

We remark that the exponent 1/4 cannot be improved, as it does not depend on γ, α and β .

LEMMA 3. – Suppose that for $0 < \mu$

$$|| B(u,u)(t) ||_{L^2} \le \frac{C}{t^{\mu}},$$

then

$$||B_2(S(t)u_0, B(u, u))||_{L^2} \le \frac{C}{t^{1/4+\mu}},$$

and there exists $\nu > 0$ such that

$$||B_2(B(u,u), B(u,u))||_{L^2} \le \frac{C}{t^{\mu+\nu}}.$$

By (31)

$$\begin{split} \|B_2(S(t)u_0, B(u, u))\|_{L^2} &\leq \int_1^t \frac{C}{(t-s)^{2-\frac{3}{2q}} s^{\frac{3}{2}(\frac{1}{2}-\frac{1}{\beta})} s^{\mu}} ds \\ &\leq \frac{C}{t^{-\varepsilon+\frac{3}{2}(\frac{1}{6}+\frac{2}{3}\varepsilon)+\mu}} \\ &\leq \frac{C}{t^{1/4+\mu}}, \end{split}$$

and, by (28) and (29)

$$\begin{split} \|B_2(B(u,u),B(u,u))\|_{L^2} &\leq \int_1^t \frac{C}{(t-s)^{2-\frac{3}{2q}} s^{\mu} s^{\frac{1}{2}(1-\frac{2}{\beta})+\frac{2}{\beta}\mu}} ds \\ &\leq \frac{C}{t^{-\frac{1}{3}\varepsilon+\frac{1}{6}+(\frac{5}{3}-\frac{4}{3}\varepsilon)\mu}}. \end{split}$$

We can start with $\mu = 1/6 - \varepsilon$, and obtain any exponent $\eta > 1/4$. Thus,

(34)
$$||B_2(u,u)||_{L^2} \le \frac{C}{t^{1/4}}.$$

We constructed u for $s \leq 3/4$. Now we will see that if s > 3/4, u as above is actually in H^s . We limit ourselves to the bilinear form (17), as the term $S(t)u_0$ satisfies at least the same estimates.

Lemma 4. – Let $f, g \in H^{s}(\mathbb{R}^{3}), 3/4 \leq s < 3/2$,

(35)
$$\| \Lambda^{2s-3/2}(fg) \|_{L^2} \leq C \| \Lambda^s f \|_{L^2} \| \Lambda^s g \|_{L^2}.$$

For a proof *see* the Appendix. Suppose now that s > 3/4, and u is the solution of Proposition 3 for s = 3/4. Then, if $\eta \le 1/4$, we obtain for t < 1

$$\|\Lambda^{\frac{3}{4}+\eta}B(f,g)(t)\|_{L^{2}} \leq \int_{0}^{t} \frac{C}{(t-\tau)^{\frac{1}{2}+\frac{3/4+\eta}{2}}} d\tau$$

using Lemma 4 and the boundedness of f in $H^{3/4}$, so that

(36)
$$\| \Lambda^{\frac{3}{4}+\eta} B(f,g)(t) \|_{L^2} \leq C t^{\frac{1}{8}-\frac{\eta}{2}},$$

which gives the continuity at zero. For t > 1, we have by (29)

$$||B(f,g)||_{L^4} \le \frac{C}{t^{1/4}}$$

which allows us to improve (22), for $s \leq 3/4$

$$\|\Lambda^{s}B(f,g)(t)\|_{L^{2}} \leq \int_{0}^{1} \frac{\|\theta\|_{L^{1}}}{(t-\tau)^{1/2+s/2}\omega^{2}(\tau)} d\tau |f||g| + \int_{1}^{t} \frac{C \|\theta\|_{L^{1}}}{(t-\tau)^{1/2+s/2}\tau^{1/2}} d\tau \leq \frac{C}{t^{s/2}}.$$

Then

$$\| \Lambda^{\frac{3}{4}} f(t) \|_{L^2} \leq \frac{C}{t^{\frac{3}{8}}}$$

and,

$$\|\Lambda^{\frac{3}{4}+\eta}B_1(f,g)\|_{L^2} \le \frac{C}{(t-1)^{\frac{1}{2}+\frac{3/4+\eta}{2}}}$$

and

$$\|\Lambda^{\frac{3}{4}+\eta}B_2(f,g)\|_{L^2} \leq \int_1^t \frac{C}{(t-\tau)^{\frac{1}{2}+\frac{3/4+\eta}{2}}\tau^{\frac{1}{2}}} d\tau$$

then, for all t

$$\| \Lambda^{\frac{3}{4}+\eta} B(f,g)(t) \|_{L^2} \leq \frac{C}{1+t^{\frac{3}{8}+\frac{\eta}{2}}}.$$

We have thus obtained $u \in H^{\frac{3}{4}+\eta}$. By applying the same argument we can reach the value s > 3/2, as

$$\Lambda^{s+\eta} B(f,g)(t) = \int_0^t \frac{1}{(t-\tau)^2} \Lambda^{\eta+3/2-s} \theta * \Lambda^{2s-3/2}(fg)(\tau) d\tau,$$

with $\eta + 3/2 - s < 1$. Before dealing with the case s > 3/2, let us briefly show (7). By Sobolev's injection theorem (see [14]), if s < 3/2 then

$$\|f\|_{L^p} \leq C \|\Lambda^s f\|_{L^2},$$

with 1/p = 1/2 - s/3. If $s = 1 + \alpha$, $\alpha < 1/2$, we obtain, for t < 1

$$|| B(f,g)(t) ||_{\infty} \leq \int_{0}^{t} \frac{C}{(t-\tau)^{1-\alpha}} d\tau.$$

For small t, B(f,g) is bounded and tends to zero as t goes to zero. Now we treat the case where s > 3/2, using the following estimate

Lemma 5. – Let $f, g \in H^{s}(\mathbb{R}^{3}), s > 3/2$,

(38)
$$\|\Lambda^{s}(fg)\|_{L^{2}} \leq C(s)(\|\Lambda^{s}f\|_{L^{2}}\|g\|_{\infty} + \|\Lambda^{s}g\|_{L^{2}}\|f\|_{\infty}).$$

For a proof, see the appendix. We will then show

LEMMA 6. – Let s > 3/2, for all t > 0

(39)
$$\|\Lambda^{s} u(\cdot, t)\|_{L^{2}} \leq \frac{C(s)}{1+t^{\frac{s}{2}}}.$$

This can be achieved by successive iterations, starting from the previous estimate for s = 2, and applying Lemma 5. Let us see how it works at each step. Let $\eta < 1$, we first treat the case t < 1.

$$\|\Lambda^{s+\eta}B(f,g)(t)\|_{L^2} \leq \int_0^t \frac{1}{(t-\tau)^2} \|\Lambda^{\eta}\theta\left(\frac{\cdot}{\sqrt{t-\tau}}\right) * \Lambda^s(fg)\|_{L^2} d\tau,$$

and as f and g are bounded in L^{∞} and in H^s ,

(40)
$$\| \Lambda^{s+\eta} B(f,g)(t) \|_{L^2} \leq C(s) t^{\frac{1}{2} - \frac{\eta}{2}}.$$

For t > 1,

$$\| \Lambda^{s+\eta} B_1(f,g) \|_{L^2} \leq \int_0^1 \frac{1}{(t-\tau)^{\frac{1}{2} + \frac{s+\eta-1/2}{2}}} \| \Lambda^{s+\eta-\frac{1}{2}} \theta \|_{L^1} \| \Lambda f \|_{L^2} \| \Lambda g \|_{L^2} d\tau,$$

by using Lemma 4. Then

$$\| \Lambda^{s+\eta} B_1(f,g) \|_{L^2} \le \frac{C(s)}{(t-1)^{\frac{s+\eta+1/2}{2}}}.$$

For t > 1,

$$\|\Lambda^{s+\eta}B_2(f,g)\|_{L^2} \leq \int_1^t \frac{1}{(t-\tau)^2} \|\Lambda^{\eta}\theta\left(\frac{\cdot}{\sqrt{t-\tau}}\right) * \Lambda^s(fg)\|_{L^2} d\tau,$$

and using Lemma 5 we deduce the estimate for $s + \eta$ from the estimate for s:

(41)
$$\|\Lambda^{s+\eta}B_2(f,g)\|_{L^2} \leq \frac{C(s)}{t^{\frac{s+\eta}{2}}}$$

This achieves the proof of the existence of $u \in BC([0, +\infty), H^s)$. Now, we observe that, as we have local existence and uniqueness for s > 1/2(see [4]), our solution is unique by applying this theorem on intervals covering $[0, \infty)$. In the case s = 1/2, it is necessary to establish uniqueness directly, (see [4] or [11]). The reader should refer to [11] or [7], in order to see why a solution of (11) is actually a solution in the classical sense. We can nevertheless make a few remarks. By the same process we use to gain the regularity s - 3/4, we can establish, independently of s, estimates in H^r , r > s: for all t > 0, there exists $\pi(r) > 0$

$$\|\Lambda^r u(\cdot,t)\|_{L^2} \leq \frac{C(r)}{t^{\pi(r)}},$$

and $\Lambda^r u$ is holderian on every interval $[t_0, t_1]$, provided $t_1 > t_0 > 0$. This provides the regularity in the space variables. As for regularity in time, it suffices to use the relation, which can be established without knowing (10)

(42)
$$u(t) = S(t-\varepsilon)u(\varepsilon) + \int_{\varepsilon}^{t} \mathbb{P}S(t-\tau)\nabla \cdot (u \otimes u)d\tau,$$

and the following lemma, (see [11] or [7] for a proof).

Lemma 7. – Let $u(t) = \int_0^t e^{-(t-s)\Delta} f(s) ds, t \in [0,T], f \in C^{\eta}([0,T],B), \eta < 1, B$ a Banach space. Then $u \in C^{1+\nu}((0,T],B), Au \in C^{\nu}((0,T],B), and$

$$\partial_t u = -\Delta u + f,$$

for all $\nu < \eta$.

We then obtain the C^{∞} regularity of u, for t > 0, with a bootstrap argument. Let us see how condition (13) can be expressed on u_0 in terms

of Besov spaces. We set $|S(t)u_0| < \beta$, where β has been chosen so that our scheme converges in F. Remember that

$$|S(t)u_0| = \sup_t \omega(t) || S(t)u_0 ||_{L^4}.$$

Therefore, as $3/8 - \inf(s, 3/4)/2 < 1/8$,

(43)
$$\sup_{t} t^{3/8 - \inf(s, 3/4)/2} \parallel S(t)u_0 \parallel_{L^4} < \beta$$

and

(44)
$$\sup_{t} t^{1/8} \| S(t)u_0 \|_{L^4} < \beta.$$

LEMMA 8. – Let $u_0 \in \mathcal{S}(\mathbb{R}^3)$, $\alpha > 0$, and $\gamma > 1$; $\sup_t t^{\alpha/2} || S(t)u_0 ||_{L^{\gamma}}$ is a norm on $\dot{B}^{-\alpha}_{\beta,\infty}$ which is equivalent to the classical dyadic norm.

We refer to [4] or [12] for a proof. In our case, except for s = 3/4, the condition on u_0 is equivalent to

$$\begin{cases} \| u_0 \|_{\dot{B}_{4,\infty}^{-1/4}} \leq \beta, \\ \| u_0 \|_{\dot{B}_{4,\infty}^{-(3/4-\inf\{s,3/4\})}} \leq \beta. \end{cases}$$

Thus, as $\dot{H}^{\frac{1}{2}} \subset \dot{B}_{4,\infty}^{-1/4}$ and $\dot{H}^{\inf(s,3/4)} \subset \dot{B}_{4,\infty}^{-(3/4-\inf(s,3/4))}$, u_0 belongs to both Besov spaces. If u is a solution with initial condition u_0 , $\lambda u(\lambda x, \lambda^2 t)$ is a solution with $\lambda u_0(\lambda x)$ as initial data. The condition (44) is independent of λ for the norm is invariant by scaling. And (43) can be forced by a suitable choice of λ . For s = 3/4, we know that $H^{\frac{3}{4}} \subset L^4$, and we conclude in the same way. This ends the proof.

Proof of Theorem 2. – We introduce as before two Banach spaces $E = BC([0, +\infty), L^p)$ with the natural norm

$$\parallel f \parallel = \sup_{t} \parallel f(\cdot, t) \parallel_{L^{p}},$$

and $F = \{f | t^{\frac{1}{2} - \frac{3}{4p}} f \in BC([0, +\infty), L^{2p})\}$ with the norm $|f| = \sup_{t} t^{\frac{1}{2} - \frac{3}{4p}} ||f(\cdot, t)||_{L^{2p}}.$

Then, we see that

(45)
$$|| B(f,g)(t) ||_{L^p} \le || f || |g| || \theta ||_{L^q} \int_0^t \frac{1}{(t-s)^{2-\frac{3}{2q}} s^{\frac{1}{2}-\frac{3}{4p}}} ds$$

(46)
$$|| B(f,g)(t) ||_{L^{2p}} \le |f| |g| || \theta ||_{L^q} \int_0^t \frac{1}{(t-s)^{2-\frac{3}{2q}} s^{1-\frac{3}{2p}}} ds,$$

(47) where
$$\frac{1}{p} = \frac{1}{q} + \frac{1}{p} + \frac{1}{2p} - 1.$$

which gives the continuity of B from $F \times F \to F$ and $F \times E \to E$, with constants $\gamma(p)$ and $\eta(p)$.

$$\begin{split} \gamma(p) &= \parallel \theta \parallel_{L^q} t^{\frac{1}{2} - \frac{3}{4p}} \int_0^t \frac{1}{(t-s)^{2 - \frac{3}{2q}} s^{1 - \frac{3}{2p}}} ds \\ \eta(p) &= \parallel \theta \parallel_{L^q} \int_0^t \frac{1}{(t-s)^{2 - \frac{3}{2q}} s^{\frac{1}{2} - \frac{3}{4p}}} ds, \end{split}$$

and a simple rescaling shows both quantities are bounded. Then if we use the same sequence as before, Lemma 1 gives us the convergence in F, and we obtain the convergence in E by a contraction argument, as $\eta(p) \leq \gamma(p)$, we obtain $2|u|\eta(p) < 1$. The continuity at t = 0 comes from a slight modification of (45), as we can replace |f| by $\sup_{[0,t]} \tau^{\frac{1}{2}-\frac{3}{4p}} ||f(\cdot,\tau)||_{L^{2p}}$, which tends to zero with t. Actually, the value of $t^{\frac{1}{2}-\frac{3}{4p}} ||f(\cdot,t)||_{L^{2p}}$ could only be zero: the first term $u_1 = S(t)u_0$ tends to zero, for if we consider a sequence of C_0^{∞} functions $(v_j)_j$ which approximate u_0 ,

$$t^{\frac{1}{2}-\frac{3}{4p}} \|S(t)u_0\|_{L^{2p}} = t^{\frac{1}{2}-\frac{3}{4p}} \|S(t)\| \|u_0 - v_j\|_{L^p} + \|S(t)\| t^{\frac{1}{2}-\frac{3}{4p}} \|v_j\|_{L^{2p}}.$$

By Lemma 8 the condition on u_0 becomes,

$$\| u_0 \|_{\dot{B}_{2p,\infty}^{-(1-\frac{3}{2p})} \le \delta(p),$$

where $\delta(p) \approx 1/\gamma(p)$. This proves Proposition 1. Proposition 2 results from the inclusion of L^3 in $\dot{B}_{2p,\infty}^{-(1-\frac{3}{2p})}$. Note that for p = 2, we impose the condition

$$t^{\frac{1}{4}} \parallel S(t)u_0 \parallel_{L^4} < \delta,$$

which is equivalent to the condition (2). For a general $u_0 \in L^2$, we only know

$$t^{\frac{3}{8}} \parallel S(t)u_0 \parallel_{L^4} < +\infty.$$

In other words, we do not know enough on low frequencies, and a sufficient condition is (2), of which $u_0 \in L^3$ or $u_0 \in H^{\frac{1}{2}}$ with small norms are particular cases. We obtained existence and uniqueness in a ball of F with Lemma 1 and uniqueness in the whole space can be obtained directly as in [11] or [4]. As in the Sobolev case, it is possible to obtain estimates on L^q norms of $u(\cdot, t)$, q > p, in order to show the C^{∞} regularity for t > 0.

APPENDIX

We recall that if $\phi \in \mathcal{S}(\mathbb{R}^n)$ is a radial function so that $\text{Supp } \hat{\phi} \subset \{|\xi| < 1 + \varepsilon\}$, and $\hat{\phi}(\xi) = 1$ for $|\xi| < 1$, we define $\phi_j(x) = 2^{nj}\phi(2^jx)$, S_j the convolution operator with ϕ_j , and $\Delta_j = S_{j+1} - S_j$. Then

$$I = \sum_{-\infty}^{+\infty} \Delta_j$$

and $f(x) \in \dot{H}^{s}(\mathbb{R}^{n})$ if and only if, $\forall j$,

(48)
$$\|\Delta_j(f)\|_{L^2} \le 2^{-js} \|f\|_{\dot{H}^s} \varepsilon_j$$

where $\sum \varepsilon_j^2 \leq 1$. We will show the two following inequalities, which are homogeneous variants of well-known inequalities:

for $s < \frac{n}{2}$,

(49)
$$\|\Lambda^{2s-\frac{n}{2}}(fg)\|_{L^2} \leq C \|\Lambda^s f\|_{L^2} \|\Lambda^s g\|_{L^2},$$

for $s > \frac{n}{2}$,

(50)
$$\|\Lambda^{s}(fg)\|_{L^{2}} \leq C(s)(\|\Lambda^{s}f\|_{L^{2}}\|g\|_{\infty} + \|\Lambda^{s}g\|_{L^{2}}\|f\|_{\infty}).$$

Let us start with the first case: we will use a paraproduct decomposition (see [3]): for $f, g \in S$,

(51)
$$f(x)g(x) = \sum_{j} \Delta_{j}(f) \sum_{l} \Delta(g)$$
$$= \sum_{|j-l| \le 1} \Delta_{j}(f) \Delta_{l}(g) + \sum_{|j-l| \ge 1} \Delta_{j}(f) \Delta_{l}(g).$$

The second sum is, by reordering the terms, a finite sum of terms like $S_2 = \sum_j S_{j-1}\Delta_j(g)$. We will treat only S_2 , as the other ones are of the same kind. The Fourier transform of S_2 is supported in an annulus $[2^{j-1}(1-2\varepsilon), 2^{j+1}(1+2\varepsilon)]$. Using Bernstein's lemma,

$$\begin{aligned} \|\Delta_j(f)\|_{\infty} &\leq C2^{j\frac{n}{2}} \|\Delta_j f\|_{L^2} \\ &\leq C2^{j\frac{n}{2}-s} \|f\|_{\dot{H}^s} \varepsilon_j. \end{aligned}$$

Then,

$$||S_j(f)||_{\infty} \le C \sum_{-\infty}^j 2^{q(\frac{n}{2}-s)} \varepsilon_q ||f||_{\dot{H}^s}.$$

If j < 0,

$$\sum_{-\infty}^{j} 2^{q(\frac{n}{2}-s)} \varepsilon_q = 2^{j(\frac{n}{2}-s)} \tilde{\varepsilon_j},$$

and

$$\tilde{\varepsilon}_j = \sum_{-\infty}^0 2^{q(\frac{n}{2}-s)} \varepsilon_{j+q}$$

is a convolution product between l^1 and l^2 , therefore in l^2 . For $j \ge 0$,

$$\sum_{-\infty}^{j} 2^{q(\frac{n}{2}-s)} \varepsilon_q \le C(1+\ldots+2^{j(\frac{n}{2})}\varepsilon_j).$$

if

(52)
$$2^{j(\frac{n}{2}-s)}\check{\varepsilon_j} = 1 + \ldots + 2^{j(\frac{n}{2}-s)}\varepsilon_j,$$

 $(\check{\varepsilon}_i)$ is in l^2 for the same reason as $\tilde{\varepsilon}_i$. This gives

 $||S_j(f)||_{\infty} \le C2^{j(\frac{n}{2}-s)} ||f||_{\dot{H^s}} \eta_j.$

where $(\eta_j)_j \in l^2$. Then, if $(\mu_j)_j$ is associated to g,

$$\|S_{j-1}(f)\Delta_j(g)\|_{L^2} \le 2^{j(\frac{n}{2}-s)} \|f\|_{\dot{H}^s} \|g\|_{\dot{H}^s} \eta_j \mu_j,$$

and as $(\eta_j \mu_j)_j \in l^1 \subset l^2$, $S_1 \in \dot{H}^{2s-\frac{n}{2}}$. The terms of the first sum in (51) are like $S_1 = \sum_j \Delta_j(f) \Delta_j(g)$, and in this case we only know that the support of the Fourier transform of $\Delta_j(f) \Delta_j(g)$ is in $\{|\xi| \leq C2^j\}$, and

$$\|\Delta_{j}(f)\Delta_{j}(g)\|_{L^{1}} \leq \varepsilon_{j}\mu_{j}2^{-2js}\|f\|_{\dot{H}^{s}}\|g\|_{\dot{H}^{s}}.$$

LEMMA 9. – If $u \in L^1$, supp $\hat{u} \subset B(0, R)$, and $\|\hat{u}(\xi)\|_{\infty} \leq R^{-2s}$, then

$$\|\Lambda^{2s-\frac{n}{2}}u\|_{L^2} \le \int_{S^2} dS$$

This comes from

$$\int_{|\xi| \le R} \left(|\xi|^2 \right)^{2s - \frac{n}{2}} |\hat{u}(\xi)|^2 d\xi \le R^{-4s} \int_{|\xi| \le R} |\xi|^{4s - n} d\xi \\ \le R^{-4s} \int_{S^2} \int_0^R r^{4s - 1} dr dS.$$

then, applying Lemma 9 to $\Delta_j(f)\Delta_j(g)$,

$$\|S_{j-1}(f)\Delta_j(g)\|_{H^{2s-\frac{n}{2}}} \le C\varepsilon_j\mu_j \|f\|_{\dot{H}^s} \|g\|_{\dot{H}^s}.$$

As $(\eta_j \mu_j)_j \in l^1$, this ends the proof. The second inequality can be proved by the same estimates, except that we have a better estimate for $||S_j(f)||_{\infty}$ and $||\Delta_j(f)||_{\infty}$, both bounded by $||f||_{\infty}$.

F. PLANCHON

REFERENCES

- H. BEIRĂ O DA VEGA, Existence and Asymptotic Behaviour for Strong Solutions of the Navier-Stokes Equations in the Whole Space, *Indiana Univ. Math. Journal*, Vol. 36(1), 1987, pp. 149-166.
- [2] J. BERGH and J. LÖFSTROM, Interpolation Spaces, An Introduction, Springer-Verlag, 1976.
- [3] J. M. BONY, Calcul symbolique et propagation des singularités dans les équations aux dérivées partielles non linéaires, Ann. Sci. Ecole Norm. Sup., Vol. 14, 1981, pp. 209-246.
- [4] M. CANNONE, Ondelettes, Paraproduits et Navier-Stokes, PhD thesis, Université Paris IX, CEREMADE F-75775 PARIS CEDEX, 1994, to be published by Diderot Editeurs (1995).
- [5] J.-Y. CHEMIN, Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM Journal Math. Anal., Vol. 23, 1992, pp. 20-28.
- [6] Y. GIGA, Solutions for Semi-Linear Parabolic Equations in $L^{\bar{p}}$ and Regularity of Weak Solutions of the Navier-Stokes System, *Journal of differential equations*, Vol. **61**, 1986, pp. 186-212.
- [7] Y. GIGA and T. MIYAKAWA, Solutions in L^r of the Navier-Stokes Initial Value Problem, Arch. Rat. Mech. Anal., Vol. 89, 1985, pp. 267-281.
- [8] R. KAJIKIYA and T. MIYAKAWA, On L^2 Decay of Weak Solutions of the Navier-Stokes Equations in \mathbb{R}^n , *Math. Zeit.*, Vol. **192**, 1986, pp. 135-148.
- [9] T. KATO, Strong L^p Solutions of the Navier-Stokes Equations in \mathbb{R}^m with Applications to Weak Solutions, *Math. Zeit.*, Vol. 187, 1984, pp. 471-480.
- [10] T. KATO and H. FUJITA, On the non-stationnary Navier-Stokes system, Rend. Sem. Math. Univ. Padova, Vol. 32, 1962, pp. 243-260.
- [11] T. KATO and H. FUJITA, On the Navier-Stokes Initial Value Problem I, Arch. Rat. Mech. Anal., Vol. 16, 1964, pp. 269-315.
- [12] J. PEETRE, New thoughts on Besov Spaces, Duke Univ. Math. Series, Duke University, Durham, 1976.
- [13] J. SERRIN, On the Interior Regularity of Weak Solutions of the Navier-Stokes Equations, Arch. Rat. Mech. Anal., Vol. 9, 1962, pp. 187-195.
- [14] E. M. STEIN, Singular Integral and Differentiability Properties of Functions, Princeton University Press, 1970.
- [15] M. TAYLOR, Analysis on Morrey Spaces and Applications to Navier-Stokes and Other Evolution Equations, *Comm. in PDE*, Vol. 17, 1992, pp. 1407-1456.
- [16] H. TRIEBEL, Theory of Function Spaces, volume 78 of Monographs in Mathematics, Birkhauser, 1983.

(Manuscript received October 24, 1994.)