@article{AIHPC_1996__13_5_567_0, author = {Cao, Daomin and Noussair, Ezzat S.}, title = {Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb {R}^N$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {567--588}, publisher = {Gauthier-Villars}, volume = {13}, number = {5}, year = {1996}, mrnumber = {1409663}, zbl = {0859.35032}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1996__13_5_567_0/} }
TY - JOUR AU - Cao, Daomin AU - Noussair, Ezzat S. TI - Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb {R}^N$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 1996 SP - 567 EP - 588 VL - 13 IS - 5 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1996__13_5_567_0/ LA - en ID - AIHPC_1996__13_5_567_0 ER -
%0 Journal Article %A Cao, Daomin %A Noussair, Ezzat S. %T Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb {R}^N$ %J Annales de l'I.H.P. Analyse non linéaire %D 1996 %P 567-588 %V 13 %N 5 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1996__13_5_567_0/ %G en %F AIHPC_1996__13_5_567_0
Cao, Daomin; Noussair, Ezzat S. Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb {R}^N$. Annales de l'I.H.P. Analyse non linéaire, Tome 13 (1996) no. 5, pp. 567-588. http://archive.numdam.org/item/AIHPC_1996__13_5_567_0/
[1] On a nonlinear elliptic equation involving the Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 253-294. | MR | Zbl
and ,[2] On a min-max procedure for the existence of a positive solution for certain scalar field equation in RN ., Revista Mat. Iberoamericana, Vol. 6, 1990, pp. 1-15. | MR | Zbl
and ,[3] On the existence of a positive solution of semilinear elliptic equations in unbounded domains, preprint.
and ,[4] The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rat. Mech. Anal., Vol. 114, 1991, pp. 79-93. | MR | Zbl
and ,[5] A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., Vol. 88, 1983, pp. 486-490. | MR | Zbl
and ,[6] Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in RN., Nonlinear Anal. TMA., Vol. 15, 1990, pp. 1045-1052. | MR | Zbl
,[7] Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with "rich" topology, Nonlinear Anal. TMA., Vol. 18, 1992, pp. 109-119. | MR | Zbl
and ,[8] Topologie et cas limite des injections de Sobolev, C. R. Acad. Sc. Paris, I, Vol. 299, 1984, pp. 209-212. | MR | Zbl
,[9] On the variational principle, J. Math. Anal. Appl., Vol. 17, 1974, pp. 324-353. | MR | Zbl
,[10] Uniqueness of positive solutions of Δu - u + up = 0 in RN., Arch. Rat. Mech. Anal., Vol. 105, 1989, pp. 243-266. | MR | Zbl
,[11] Remarks on a semilinear elliptic equation on RN., J. Diff. Equats., Vol. 74, 1988, pp. 34-49. | MR | Zbl
,[12] The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 1, 1984, pp. 102-145 and 223-283. | Numdam | MR | Zbl
,[13] On positive solutions of semilinear elliptic equations in unbounded domains, in "Nonlinear Diffusion Equations and their equilibrium States", Springer, New York, 1988. | MR | Zbl
,[14] On the existence of nodal solutions of the equation -Δu = |u|2*-2u with Dirichlet boundary conditions, Differential and Integral Equations, Vol. 6, 1993, pp. 849-862. | MR | Zbl
and ,[15] Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., Vol. 65, 1989, pp. 147-166. | MR | Zbl
,[16] On nonhomogenous elliptic equations involving critical Sobolev exponent, Ann. I.H.P. Anal. non linéaire, Vol. 9, 1992, pp. 281-304. | Numdam | MR | Zbl
,[17] Multiple entire solutions of semilinear elliptic equation, Nonlinear Anal. TMA., Vol. 12, 1988, pp. 1297-1316. | MR | Zbl
,