Nontrivial periodic solutions for strong resonance hamiltonian systems
Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 1, p. 103-117
@article{AIHPC_1997__14_1_103_0,
     author = {Chang, K. C. and Liu, J. Q. and Liu, M. J.},
     title = {Nontrivial periodic solutions for strong resonance hamiltonian systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {14},
     number = {1},
     year = {1997},
     pages = {103-117},
     zbl = {0881.34061},
     mrnumber = {1437190},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1997__14_1_103_0}
}
Chang, K. C.; Liu, J. Q.; Liu, M. J. Nontrivial periodic solutions for strong resonance hamiltonian systems. Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 1, pp. 103-117. http://www.numdam.org/item/AIHPC_1997__14_1_103_0/

[AZ1] H. Amann and E. Zehnder, Nontrivial Solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Sc. Super. Pisa, CC. Sci., IV, Ser. 7, 1980, pp. 539-603. | Numdam | MR 600524 | Zbl 0452.47077

[AZ2] H. Amann and E. Zehnder, Periodic solutions of asymptotically Hamiltonian systems, Manuscr. Math., Vol. 32, 1980, pp. 149-189. | MR 592715 | Zbl 0443.70019

[Ch1] K.C. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math., Vol. 34, 1981, pp. 693-712. | MR 622618 | Zbl 0444.58008

[Ch2] K.C. Chang, Applications of homology theory to some problems in differential equations, Nonlinear Func. Anal., (F.E. BROWDER Ed.), Proc. Symp. Pure Math., AMS, 1986, pp. 253-261. | MR 843564 | Zbl 0597.58003

[Ch3] K.C. Chang, On the homology method in the critical point theory, PDE and related subjects, (M. MIRANDA Ed.) Pitman, Vol. 269, 1992, pp. 59-77. | MR 1190934 | Zbl 0798.58012

[CL] K.C. Chang and J.Q. Liu, A strong resonance problem, Chinese Ann. of Math., Vol. 11B, 1990, pp. 191-210. | MR 1062090 | Zbl 0719.58012

[CZ] C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math., Vol. 37, 1984, pp. 207-253. | MR 733717 | Zbl 0559.58019

[DL] Y.H. Ding and J.Q. Liu, Periodic solutions of asymptotically linear Hamiltonian systems, J. Sys. Sci. Math. Sci., Vol. 9, 1990, pp. 30-39. | MR 994751 | Zbl 0659.34042

[LL] S.J. Li and J.Q. Liu, Morse theory and asymptotically linear Hamiltonian systems, JDE 78, 1989, pp. 53-73. | MR 986153 | Zbl 0672.34037

[Li] M.J. Liu, Morse theory for strong indefinite functional and applications, Thesis, Institute of System Science, Beijing, 1990.

[Lo] Y.M. Long, Maslov index, degenerate critical points and asymptotically linear Hamiltonian systems, Science in China, Ser. A, Vol. 33, 1990, pp. 1409-1419. | MR 1090484 | Zbl 0736.58022

[LZ] Y.M. Long and E. Zehnder, Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, Stochastic Processes, Physics and Geometry, World Sci. Press, 1990, pp. 528-563. | MR 1124230

[MP] A. Marino and G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. Un. Mate. Italia, Suppl. Fasc. 3, 1975, pp. 1-32. | MR 418150 | Zbl 0311.58006

[Sa] A. Salvatore, Periodic solutions of asymptotically linear systems without symmetry, Rend. Sem. Mat. Univ., Padova, Vol. 74, 1985, pp. 147-161. | Numdam | MR 818724 | Zbl 0592.34030

[Sz] A. Szulkin, Cohomology and Morse theory for strong indefinite functionals, MZ 209, 1992, pp. 375-418. | MR 1152264 | Zbl 0735.58012