@article{AIHPC_1997__14_3_339_0, author = {Cellina, Arrigo}, title = {Minimizing a functional depending on $\nabla u$ and on $u$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {339--352}, publisher = {Gauthier-Villars}, volume = {14}, number = {3}, year = {1997}, zbl = {0876.49001}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1997__14_3_339_0/} }
TY - JOUR AU - Cellina, Arrigo TI - Minimizing a functional depending on $\nabla u$ and on $u$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 1997 SP - 339 EP - 352 VL - 14 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1997__14_3_339_0/ LA - en ID - AIHPC_1997__14_3_339_0 ER -
Cellina, Arrigo. Minimizing a functional depending on $\nabla u$ and on $u$. Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 3, pp. 339-352. http://archive.numdam.org/item/AIHPC_1997__14_3_339_0/
[1] On minima of a functional of the gradient: sufficient conditions, Nonlinear Analysis, TMA, Vol. 20, 1993, pp. 343-347. | MR | Zbl
,[2] On minima of radially symmetric functionals of the gradient, Nonlinear Analysis, TMA, Vol. 23, 1994, pp. 239-249. | MR | Zbl
and ,[3] On a problem of Potential Wells, Journal of Convex Anal.z, Vol. 2, 1995, pp. 103-116. | MR | Zbl
and ,[4] A version of Olech's Lemma in a Problem of the Calculus of Variations, SIAM J. Control and Optimization, Vol. 32, 1994, pp. 1114-1127. | MR | Zbl
and ,[5] An Existence Result in a Problem of the Vectorial Case of the Calculus of Variations, SIAM J. Control and Optimization, Vol. 333, 1995. | MR | Zbl
and ,[6] Existence of Minimizers for non quasiconvex integrals, Preprint Ecole Polytechnique Federale Lausanne, June 1994, to appear in: Arch. Rat. Mech. Anal. | MR | Zbl
and ,[7] Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992. | MR | Zbl
and ,[8] A necessary and sufficient condition for nonattainement and formation of microstructure almost everywhere in scalar variational problems, Proc. Royal Soc. Edinburgh, Vol. 124, 1984, pp. 437-471. | MR | Zbl
,[9] Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. | MR | Zbl
and ,[10] Numerical study of a relaxed variational problem from optimal design, Computer Methods in Appl. Math. and Eng., Vol. 57, 1986, pp. 107-127. | MR | Zbl
, and ,[11] Analysis and Numerical Studies of a Problem of Shape Design, Arch. Rat. Mech. Anal., Vol. 114, 1991, pp. 349-363. | MR | Zbl
, and ,[12] Optimal Design and Relaxation of Variational Problems I, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 113-137. | MR | Zbl
and ,[13] Existence Theorems for Nonconvex Problems, J. Math. Pures Appl., Vol. 62, 1983, pp. 349-359. | MR | Zbl
and ,[14] Calcul des variations et Homegenization, in: Les Méthodes de l'homogenization, Eds: D. Bergman et al., Collection de la Direction des Études et recherche de l'Électricité de France, Vol. 57, 1985, pp. 319-369. | MR
and ,[15] Sur une classe de fonctionnelles non convexes et applications, SIAM J. Math. Anal., Vol. 21, 1990, pp. 37-52. | MR | Zbl
,[16] Théoremes d'existence en calcul des variations et applications a l'élasticité non lineaire, Proc. Royal Soc. Edinburgh, Vol. 109 A, 1988, pp. 51-78. | MR | Zbl
,