@article{AIHPC_1997__14_4_499_0, author = {Roquejoffre, Jean-Michel}, title = {Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {499--552}, publisher = {Gauthier-Villars}, volume = {14}, number = {4}, year = {1997}, mrnumber = {1464532}, zbl = {0884.35013}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1997__14_4_499_0/} }
TY - JOUR AU - Roquejoffre, Jean-Michel TI - Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders JO - Annales de l'I.H.P. Analyse non linéaire PY - 1997 SP - 499 EP - 552 VL - 14 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1997__14_4_499_0/ LA - en ID - AIHPC_1997__14_4_499_0 ER -
%0 Journal Article %A Roquejoffre, Jean-Michel %T Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders %J Annales de l'I.H.P. Analyse non linéaire %D 1997 %P 499-552 %V 14 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1997__14_4_499_0/ %G en %F AIHPC_1997__14_4_499_0
Roquejoffre, Jean-Michel. Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders. Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 4, pp. 499-552. http://archive.numdam.org/item/AIHPC_1997__14_4_499_0/
[1] Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math., Vol. 16, 1963, pp. 121-239. | MR | Zbl
and ,[2] Nonlinear diffusion in population genetics, combustion and nerve propagation, Partial differential equations and related topics, Lect. Notes in Math., Vol. 446, Springer Verlag, New-York, 1975, pp. 5-49. | MR | Zbl
and ,[3] Multidimensional diffusion arising in population genetics, Adv. Math., Vol. 30, 1978, pp. 33-58. | MR | Zbl
and ,[4] Uniform estimates for regularisations of free boundary problems, Analysis and partial differential equations, C. Sadosky & M. Decker eds., 1990, pp. 567-617. | Zbl
, and ,[5] Planar travelling front solutions of reaction-diffusion problems, to appear.
and ,[6] Multidimensional travelling wave solutions of a flame propagation model, Arch. Rat. Mech. Anal., Vol. 111, 1990, pp. 33-49. | MR | Zbl
, and ,[7] Stability of travelling fronts in a model for flame propagation, Part I: Linear analysis, Arch. Rat. Mech. Anal., Vol. 117, 1992, pp. 97-117. | MR | Zbl
, and ,[8] Some qualitative properties of solutions of semilinear equations in cylindrical domains, Analysis et Cetera (dedicated to J. Moser), P. H. Rabinowitz & E. Zehnder eds., Academic Press, New-York, 1990, pp. 115-164. | Zbl
and ,[9] Travelling fronts in cylinders, Ann. IHP, Analyse non linéaire, Vol. 9, 1992, pp. 497-573. | Numdam | MR | Zbl
and ,[10] On the method of moving planes and the sliding method, Bol. da So. Brasileira de Matematica, Vol. 22, 1991, pp. 1-37 | MR | Zbl
and ,[11] The approach of solutions of nonlinear diffusion equations by travelling front solutions, Arch. Rat. Mech. Anal., Vol. 65, 1977, pp. 335-361. | MR | Zbl
and ,[12] Partial differential equations of parabolic type, Prentice Hall, 1964. | MR | Zbl
,[13] Symmetry and related properties via the maximum principle, Comm. Math. Phys., Vol. 68, 1979, pp. 209-243. | MR | Zbl
, ,[14] Bifurcations of travelling waves in the thermo-diffusive model for flame propagation, Arch. Rat. Mech. Anal., Vol. 134, 1996, pp. 341-402. | MR | Zbl
and ,[15] 1. Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monog. Vol. 18, Am. Math. Soc., Providence, R.I., 1969. | MR | Zbl
and ,[16] Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Springer Verlag, New-York, 1981. | MR | Zbl
,[17] Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., Vol. 383, 1988, pp. 1-53. | MR | Zbl
,[18] The Harnack inequality for weak solutions of quasilinear parabolic equations of second order, Soviet Math. Dokl., Vol. 8, 1967, pp. 463-466. | Zbl
[19] Asymptotic behaviour of a reaction-diffusion equation in higher dimensions, Rocky Mountain J. Math., Vol. 13, 1983, pp. 355-364. | MR | Zbl
,[20] Linear and quasilinear equations of parabolic type, Transl. Math. Monog., Vol. 23, Am. Math. Soc., Providence, R.I, 1968. | Zbl
, and ,[21] Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations, J. Diff. Eq., Vol. 53, 1984, pp. 362-386. | MR | Zbl
,[22] A parabolic equation of KPP type, SIAM J. Math. Anal., Vol. 26, 1995, pp. 1-20. | MR | Zbl
and ,[23] Strong comparison principles in nonlinear parabolic equations, Nonlinear parabolic equations: Qualitative properties of solutions, L. Boccardo & A. Tesei eds., Pitman Longman 1987. | Zbl
,[24] Existence of nontrivial unstable sets for equilibriums in strongly order-preserving dynamical systems, J. Fac. Sci. Univ. Tokyo, Vol. 30, 1983, pp. 645-673. | MR | Zbl
,[25] Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rat. Mech. Anal., Vol. 24 1967, pp. 193-218. | MR | Zbl
,[26] Stability of travelling fronts in a model for flame propagation, Part II: Nonlinear stability, Arch. Rat. Mech. Anal., Vol. 117, 1992, pp. 119-153. | MR | Zbl
,[27] Convergence to travelling waves for solutions of a class of semilinear parabolic equations, J. Diff. Eq., Vol. 108, 1994, pp. 262-295. | MR | Zbl
,[28] On the stability of steady planar premixed flames, Nonlinear analysis, TMA, Vol. 22, 1994, pp. 137-154. | MR | Zbl
and ,[29] Stability of waves of nonlinear parabolic systems, Adv. Math., Vol. 22, 1976, pp. 312-355. | MR | Zbl
,[30] Shock waves and reaction diffusion equations, Grund. math. Wiss., Vol. 258, SPRINGER Verlag. | MR | Zbl
,[31] Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Am. Math. Soc., Vol. 259, 1980, pp. 299-310. | MR | Zbl
,[32] Multidimensional travelling wave fronts in a model from combustion theory and in related problems, Differential and Integral equations, Vol. 6 1993, pp. 131-155. | Zbl
,[33] A theory of thermal propagation of flame, Acta Physiochimica URSS, Vol. 9, 1938.
and ,