A generalization of the Weinstein-Moser theorems on periodic orbits of a hamiltonian system near an equilibrium
Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 6, pp. 691-718.
@article{AIHPC_1997__14_6_691_0,
     author = {Bartsch, Thomas},
     title = {A generalization of the {Weinstein-Moser} theorems on periodic orbits of a hamiltonian system near an equilibrium},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {691--718},
     publisher = {Gauthier-Villars},
     volume = {14},
     number = {6},
     year = {1997},
     mrnumber = {1482899},
     zbl = {0891.58034},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1997__14_6_691_0/}
}
TY  - JOUR
AU  - Bartsch, Thomas
TI  - A generalization of the Weinstein-Moser theorems on periodic orbits of a hamiltonian system near an equilibrium
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1997
SP  - 691
EP  - 718
VL  - 14
IS  - 6
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1997__14_6_691_0/
LA  - en
ID  - AIHPC_1997__14_6_691_0
ER  - 
%0 Journal Article
%A Bartsch, Thomas
%T A generalization of the Weinstein-Moser theorems on periodic orbits of a hamiltonian system near an equilibrium
%J Annales de l'I.H.P. Analyse non linéaire
%D 1997
%P 691-718
%V 14
%N 6
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1997__14_6_691_0/
%G en
%F AIHPC_1997__14_6_691_0
Bartsch, Thomas. A generalization of the Weinstein-Moser theorems on periodic orbits of a hamiltonian system near an equilibrium. Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 6, pp. 691-718. http://archive.numdam.org/item/AIHPC_1997__14_6_691_0/

[B1] T. Bartsch, The Conley index over a space, Math. Z., 209, 1992, pp. 167-177 | MR | Zbl

[B2] T. Bartsch, Topological Methods for Variational Problems with Symmetries, Lecture Notes in Mathematics, Springer, Berlin Heidelberg, 1560, 1993. | MR | Zbl

[B3] T. Bartsch, Bifurcation theory for nonlinear indefinite eigenvalue problems. In preparation.

[BL] S. Bromberg and S. Lopez De Medrano, Le lemme de Morse en classe Cr, r ≥ 1, Preprint.

[Ca] A. Cambini, Sul lemme di Morse, Boll. Unione Mat. Ital., 7, 1973, pp. 87-93 | MR | Zbl

[CMY] S.N. Chow, J. Mallet-Paret and J.A. Yorke, Global Hopf bifurcation from a multiple eigenvalue. Nonlinear Analysis, T.M.A., 2, 1978, pp. 753-763. | MR | Zbl

[Co] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS, Regional Conf. Ser. in Math., 38, Amer. Math. Soc., Providence, R.I., 1978. | MR | Zbl

[CoZ] C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian systems, Comm. Pure Appl. Math., 37, 1984, pp. 207-253. | MR | Zbl

[tD] T. Tom Dieck, Transformations Groups, de Gruyter, Berlin, 1987. | MR | Zbl

[D] A. Dold, Lectures on Algebraic Topology, Grundlehren der math. Wiss. 200, Springer, Berlin Heidelberg, 1980. | MR | Zbl

[FR] E. Fadell and P.H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., 45, 1978, pp. 139-174. | EuDML | MR | Zbl

[FZ] A. Floer and E. Zehnder, The equivariant Conley index and bifurcations of periodic solutions of Hamiltonian systems, Ergod. Th. and Dynam. Syst., 8, 1988, pp. 87-97. | MR | Zbl

[J] N. Jacobson, Basic Algebra I. Freedman, New York, 1985. | MR | Zbl

[L] A.M. Lyapunov, Problème général de la stabilité du mouvement, Ann. Fac. Sci., Toulouse, 2, 1907, pp. 203-474. | EuDML | JFM | Numdam | MR

[MW] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. | MR | Zbl

[Mo] J. Moser, Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., 29, 1976, pp. 727-747. | Zbl

[R] P.H. Rabinovitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS, Regional Conf. Ser. in Math., 65, Amer. Math. Soc., providence, R.I., 1986. | MR | Zbl

[Sa] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc., 291, 1985, pp. 1-41. | MR | Zbl

[Sp] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966. | MR | Zbl

[W1] A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Inv. math., 20, 1973, pp. 47-57. | EuDML | MR | Zbl

[W2] A. Weinstein, Bifurcations and Hamilton's principle, Math. Z., 159, 1978, pp. 235- 248. | EuDML | MR | Zbl

[Ya] C.T. Yang, On the theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujòbô and Dyson, Ann. Math., 60, 1954, pp. 262-282. | MR | Zbl

[Yo] J.A. Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc., 22, 1963, pp. 509-512. | MR | Zbl