Multiple homoclinic solutions for a class of autonomous singular systems in 2
Annales de l'I.H.P. Analyse non linéaire, Volume 15 (1998) no. 1, pp. 113-125.
@article{AIHPC_1998__15_1_113_0,
     author = {Caldiroli, Paolo and Nolasco, Margherita},
     title = {Multiple homoclinic solutions for a class of autonomous singular systems in $\mathbb R^2$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {113--125},
     publisher = {Gauthier-Villars},
     volume = {15},
     number = {1},
     year = {1998},
     mrnumber = {1614603},
     zbl = {0907.58014},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1998__15_1_113_0/}
}
TY  - JOUR
AU  - Caldiroli, Paolo
AU  - Nolasco, Margherita
TI  - Multiple homoclinic solutions for a class of autonomous singular systems in $\mathbb R^2$
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1998
SP  - 113
EP  - 125
VL  - 15
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1998__15_1_113_0/
LA  - en
ID  - AIHPC_1998__15_1_113_0
ER  - 
%0 Journal Article
%A Caldiroli, Paolo
%A Nolasco, Margherita
%T Multiple homoclinic solutions for a class of autonomous singular systems in $\mathbb R^2$
%J Annales de l'I.H.P. Analyse non linéaire
%D 1998
%P 113-125
%V 15
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1998__15_1_113_0/
%G en
%F AIHPC_1998__15_1_113_0
Caldiroli, Paolo; Nolasco, Margherita. Multiple homoclinic solutions for a class of autonomous singular systems in $\mathbb R^2$. Annales de l'I.H.P. Analyse non linéaire, Volume 15 (1998) no. 1, pp. 113-125. http://archive.numdam.org/item/AIHPC_1998__15_1_113_0/

[AB] A. Ambrosetti and M.L. Bertotti, Homoclinics for second order conservative systems, in Partial Differential Equations and Related Subjects, ed. M. Miranda, Pitman Research Notes in Math. Ser. (London, Pitman Press), 1992. | MR | Zbl

[ACZ] A. Ambrosetti and V. Coti Zelati, Multiple Homoclinic Orbits for a Class of Conservative Systems, Rend. Sem. Mat. Univ. Padova, Vol. 89, 1993, pp. 177-194. | EuDML | Numdam | MR | Zbl

[BC] A. Bahri and J.M. Coron, On a Nonlinear Elliptic Equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 253-294. | MR | Zbl

[BG] V. Benci and F. Giannoni, Homoclinic orbits on compact manifolds, J. Math. Anal. Appl., Vol. 157, 1991, pp. 568-576. | MR | Zbl

[Be] U. Bessi, Multiple homoclinic orbits for autonomous singular potentials, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 124, 1994, pp. 785-802. | MR | Zbl

[B] S.V. Bolotin, Existence of homoclinic motions, Vestnik Moskov. Univ. Ser. I Mat. Mekh., Vol. 6, 1980, pp. 98-103. | MR | Zbl

[BS] B. Buffoni and E. Séré, A global condition for quasi random behavior in a class of conservative systems, Vol. XLIX, 1996, pp. 285-305. | MR | Zbl

[C] P. Caldiroli, Existence and multiplicity of homoclinic orbits for potentials on unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, Vol. 124, 1994, pp. 317-339. | MR | Zbl

[CZES] V. Coti ZELATI, I. EKELAND and E. SÉRÉ, A Variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 288, 1990, pp. 133-160. | EuDML | MR | Zbl

[CZR] V. Coti Zelati and P.H. Rabinowitz, Homoclinic orbits for second order hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., Vol. 4, 1991, pp. 693-727. | MR | Zbl

[G] W.B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., Vol. 204, 1975, pp. 113-135. | MR | Zbl

[J] L. Jeanjean, Existence of connecting orbits in a potential well, Dyn. Sys. Appl., Vol. 3, 1994, pp. 537-562. | MR | Zbl

[L] P.L. Lions, The concentration-compactness principle in the calculus of variations, Rev. Mat. Iberoamericana, Vol. 1, 1985, pp. 145-201. | MR | Zbl

[R] P.H. Rabinowitz, Homoclinics for a singular Hamiltonian system in R2, Proceedings of the Workshop "Variational and Local Methods in the Study of Hamiltonian Systems", ICTP (A. Ambrosetti and G. F. Dell' Antonio, eds.), World Scientific, 1995. | MR | Zbl

[R2] P.H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré. Anal. Non Linéaire, Vol. 6, 1989, pp. 331-346. | Numdam | MR | Zbl

[RT] P.H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., Vol. 206, 1991, pp. 473-479. | MR | Zbl

[S] E. Séré, Homoclinic orbits on compact hypersurfaces in R2N of restricted contact type, Comm. Math. Phys., Vol. 172, 1995, pp. 293-316. | MR | Zbl

[T] K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré. Anal. Non Linéaire, Vol. 7, 1990, pp. 427-438. | Numdam | MR | Zbl

[T2] K. Tanaka, A note on the existence of multiple homoclinic orbits for a perturbed radial potential, Nonlinear Diff. Eq. Appl., Vol. 1, 1994, pp. 149-162. | MR | Zbl