@article{AIHPC_1998__15_2_233_0, author = {Ambrosetti, Antonio and Badiale, Marino}, title = {Homoclinics : {Poincar\'e-Melnikov} type results via a variational approach}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {233--252}, publisher = {Gauthier-Villars}, volume = {15}, number = {2}, year = {1998}, mrnumber = {1614571}, zbl = {1004.37043}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1998__15_2_233_0/} }
TY - JOUR AU - Ambrosetti, Antonio AU - Badiale, Marino TI - Homoclinics : Poincaré-Melnikov type results via a variational approach JO - Annales de l'I.H.P. Analyse non linéaire PY - 1998 SP - 233 EP - 252 VL - 15 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1998__15_2_233_0/ LA - en ID - AIHPC_1998__15_2_233_0 ER -
%0 Journal Article %A Ambrosetti, Antonio %A Badiale, Marino %T Homoclinics : Poincaré-Melnikov type results via a variational approach %J Annales de l'I.H.P. Analyse non linéaire %D 1998 %P 233-252 %V 15 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1998__15_2_233_0/ %G en %F AIHPC_1998__15_2_233_0
Ambrosetti, Antonio; Badiale, Marino. Homoclinics : Poincaré-Melnikov type results via a variational approach. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 2, pp. 233-252. http://archive.numdam.org/item/AIHPC_1998__15_2_233_0/
[1] Critical points and nonlinear variational problems. Supplément au Bull. Soc. Math. de France, Vol. 120, 1992. | Numdam | MR | Zbl
,[2] Semiclassical states of Nonlinear Schrödinger equations, Archive Rat. Mech. Analysis, to appear. | Zbl
, and ,[3] Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova, Vol. 89, 1993, pp. 177-194, and Note C.R.A.S., Vol. 314, 1992, pp. 601-604. | Numdam | MR | Zbl
and ,[4] Symmetry breaking in Hamiltonian systems, Jour. Diff. Equat., Vol. 67, 1987, pp. 165-184. | MR | Zbl
, and ,[5] The Schrödinger Equation. Kluwer Acad. Publ., Dordrecht, 1991. | MR | Zbl
and ,[6] A variational proof of a Sitnikov-like theorem, Nonlin. Anal. TMA, Vol. 20, 1993, pp. 1303-1318. | MR | Zbl
,[7] Homoclinic orbits to invariant tori of Hamiltonian systems, A.M.S. Transl., Vol. 168, 1995, pp. 21-90. | Zbl
,[8] A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann., Vol. 288, 1990, pp. 133-160. | MR | Zbl
, and ,[9] Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials. Jour. Am. Math. Soc., Vol. 4, 1991, pp. 693-727. | MR | Zbl
and ,[10] Integrability and non-integrability in Hamiltonian Mechanics. Russian Math. Surveys, Vol. 38, 1983, pp. 1-76. | Zbl
,[11] Chaotic behaviour in simple dynamical systems, SIAM Review, Vol. 32, 1990, pp. 424-452. | MR | Zbl
and ,[12] Two positive solutions for a class of nonhomogeneous elliptic equations, preprint. | MR
,[13] Bifurcation d'horbites homoclines pour les systèmes hamiltoniens. Ann. Fac. Sciences Toulouse, Vol. 1, 1992, pp. 211-235. | Numdam | Zbl
,[14] On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc., Vol. 12, 1963, pp. 3-52. | MR | Zbl
,[15] Les Méthodes nouvelles de la méchanique céleste., 1892.
,[16] Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., Vol. 209, 1992, pp. 27-42. | MR | Zbl
,[17] Looking for the Bernoulli Shift, Ann. Inst. H. Poincaré, Anal. nonlin., Vol. 10, 1993, pp. 561-590. | Numdam | MR | Zbl
,[18] A note on the existence of multiple homoclinics orbits for a perturbed radial potential, NoDEA, Vol. 1, 1994, pp. 149-162. | MR | Zbl
,