Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes
Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 4, pp. 431-458.
@article{AIHPC_1998__15_4_431_0,
     author = {Carraro, Laurent and Duchon, Jean},
     title = {\'Equation de {Burgers} avec conditions initiales \`a accroissements ind\'ependants et homog\`enes},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {431--458},
     publisher = {Gauthier-Villars},
     volume = {15},
     number = {4},
     year = {1998},
     mrnumber = {1632909},
     zbl = {0912.35163},
     language = {fr},
     url = {http://archive.numdam.org/item/AIHPC_1998__15_4_431_0/}
}
TY  - JOUR
AU  - Carraro, Laurent
AU  - Duchon, Jean
TI  - Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1998
SP  - 431
EP  - 458
VL  - 15
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1998__15_4_431_0/
LA  - fr
ID  - AIHPC_1998__15_4_431_0
ER  - 
%0 Journal Article
%A Carraro, Laurent
%A Duchon, Jean
%T Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes
%J Annales de l'I.H.P. Analyse non linéaire
%D 1998
%P 431-458
%V 15
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_1998__15_4_431_0/
%G fr
%F AIHPC_1998__15_4_431_0
Carraro, Laurent; Duchon, Jean. Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 4, pp. 431-458. http://archive.numdam.org/item/AIHPC_1998__15_4_431_0/

[1] P. Bertoin, Lévy processes, Cambridge University Press, 1996. | MR | Zbl

[2] P. Billingsley, Convergence of probability measures, J. Wiley & Sons, 1968. | Zbl

[3] L. Breiman, Probability, SIAM Classics in Applied Mathematics, 1992. | MR | Zbl

[4] I.I. Gihman, A.V. Skorohod, The theory of stochastic processes II, Springer-Verlag, 1975. | MR | Zbl

[5] E. Hopf, The partial differential equation ut + u ux = μ uxx, Commun. Pure Appl. Mech., Vol. 3, p. 201-230, 1950. | MR | Zbl

[6] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM, 1973. | MR | Zbl

[7] Z.-S. She, E. Aurell, U. Frisch, The inviscid Burgers equation with initial data of brownian type, Commun. Math. Phys., Vol. 148, 1992, p. 623-641. | MR | Zbl

[8] Ya G. Sinai, Statistics of shocks in solutions of inviscid Burgers equation, Commun. Math. Phys., Vol. 148, 1992, p. 601-621. | MR | Zbl