@article{AIHPC_1998__15_6_687_0, author = {Martel, Yvan}, title = {Complete blow up and global behaviour of solutions of $u_t - \Delta u = g (u)$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {687--723}, publisher = {Gauthier-Villars}, volume = {15}, number = {6}, year = {1998}, zbl = {0914.35057}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1998__15_6_687_0/} }
TY - JOUR AU - Martel, Yvan TI - Complete blow up and global behaviour of solutions of $u_t - \Delta u = g (u)$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 1998 SP - 687 EP - 723 VL - 15 IS - 6 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1998__15_6_687_0/ LA - en ID - AIHPC_1998__15_6_687_0 ER -
%0 Journal Article %A Martel, Yvan %T Complete blow up and global behaviour of solutions of $u_t - \Delta u = g (u)$ %J Annales de l'I.H.P. Analyse non linéaire %D 1998 %P 687-723 %V 15 %N 6 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1998__15_6_687_0/ %G en %F AIHPC_1998__15_6_687_0
Martel, Yvan. Complete blow up and global behaviour of solutions of $u_t - \Delta u = g (u)$. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 6, pp. 687-723. http://archive.numdam.org/item/AIHPC_1998__15_6_687_0/
[1] Complete blow after Tmax for the solution of a semilinear heat equation, J. Funct. Anal., Vol. 71, 1987, pp. 142-174. | MR | Zbl
and ,[2] Critère d'existence de solutions positives pour des equations semi-linéaires non monotones, Ann. Inst. Henri Poincaré, Vol. 2, 1985, pp. 185-212. | Numdam | MR | Zbl
and ,[3] Blow up for ut - Δu = g(u) revisited, Adv. Diff. Eq., Vol. 1, 1996, pp. 73-90. | MR | Zbl
, , and ,[4] On the nonlinear equations Δu + eu = 0 and ∂u/ ∂t = Δu + eu, Bull. Amer. Math. Soc., Vol. 75, 1969, pp. 132-135. | MR | Zbl
,[5] Continuation of blow up solutions of nonlinear heat equations in several space dimensions, to appear.
and ,[6] Global, unbounded solutions to a parabolic equation, J. Diff. Eq., Vol. 101, 1993, pp. 80-102. | MR | Zbl
and ,[7] Uniqueness of weak extremal solutions of nonlinear elliptic problems, to appear in Houston Journal of Math., 1997. | MR | Zbl
,[8] The study of a bifurcation problem associated to an asymptotically linear function, Nonlinear Analysis TMA, Vol. 26, 1996, pp. 857-875. | MR | Zbl
and ,[9] On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Diff. Eq., Vol. 54, 1984, pp. 97-120. | MR | Zbl
, and ,