On the non-locality of quasiconvexity
Annales de l'I.H.P. Analyse non linéaire, Volume 16 (1999) no. 1, p. 1-13
@article{AIHPC_1999__16_1_1_0,
     author = {Kristensen, Jan},
     title = {On the non-locality of quasiconvexity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Gauthier-Villars},
     volume = {16},
     number = {1},
     year = {1999},
     pages = {1-13},
     zbl = {0932.49015},
     mrnumber = {1668552},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1999__16_1_1_0}
}
Kristensen, Jan. On the non-locality of quasiconvexity. Annales de l'I.H.P. Analyse non linéaire, Volume 16 (1999) no. 1, pp. 1-13. http://www.numdam.org/item/AIHPC_1999__16_1_1_0/

[1] J.J. Alibert and B. Dacorogna, An example of a quasiconvex function not polyconvex in dimension two. Arch. Rat. Mech. Anal., Vol. 117, 1992, pp. 155-166. | MR 1145109 | Zbl 0761.26009

[2] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal., Vol. 63, 1978, pp. 337-403. | MR 475169 | Zbl 0368.73040

[3] J.M. Ball, Sets of gradients with no rank-one connections. J. Math. pures et appl., Vol. 69, 1990, pp. 241-259. | MR 1070479 | Zbl 0644.49011

[4] J.M. Ball and F. Murat, Remarks on rank-one convexity and quasiconvexity. In Proceedings of the 1990 Dundee Conference on Differential Equations. | MR 1158879 | Zbl 0751.49005

[5] J.M. Ball, J.C. Currie and P.J. Olver, Null Lagrangians, weak continuity, and variational problems of any order. J. Funct. Anal., Vol. 41, 1981, pp. 135-174. | MR 615159 | Zbl 0459.35020

[6] B. Dacorogna, "Direct Methods in the Calculus of Variations". 1989 (Berlin: Springer). | MR 990890 | Zbl 0703.49001

[7] D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal., Vol. 115, 1991, pp. 329-365. | MR 1120852 | Zbl 0754.49020

[8] J. Kristensen. On quasiconvexification of locally bounded functions. Preprint, 1996.

[9] J. Kristensen. (In preparation).

[10] J. Matousek and P. Plechac, On functional separately convex hulls. Discrete and Computational Geometry (to appear). | MR 1486640 | Zbl 0892.68102

[11] N.G. Meyers, Quasiconvexity and the semicontinuity of multiple variational integrals of any order. Trans. Amer. Math. Soc., Vol. 119, 1965, pp. 125-149. | MR 188838 | Zbl 0166.38501

[12] C.B. Morrey, Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math. 2, 1952, pp. 25-53. | MR 54865 | Zbl 0046.10803

[13] C.B. Morrey, "Multiple integrals in the Calculus of Variations", 1966 (Berlin: Springer). | Zbl 0142.38701

[14] F. Murat, A survey on Compensated Compactness. In "Contributions to modern calculus of variations. (ed.) L.Cesari. Pitman Research Notes in Mathematics Series 148, Longman, Harlow, 1987, pp. 145-183. | MR 894077

[15] G.P. Parry, On the planar rank-one convexity condition. Proc. Roy. Soc. Edinburgh, Vol. 125A, 1995, pp. 247-264. | MR 1331560 | Zbl 0841.49008

[16] P. Pedregal, Laminates and microstructure. Europ. J. Appl. Math., Vol. 4 (1993), 121-149. | MR 1228114 | Zbl 0779.73050

[17] P. Pedregal, Some remarks on quasiconvexity and rank-one convexity. preprint, 1995. | MR 1415822

[18] D. Serre, Formes quadratiques et calcul des variations. J. Math. pures et appl., Vol. 62, 1983, pp. 177-196. | MR 713395 | Zbl 0529.49005

[19] V. Šverák, Examples of rank-one convex functions, Proc. Roy. Soc. Edinburgh, Vol. 114A, 1990, pp. 237-242. | MR 1055547 | Zbl 0714.49024

[20] V. Šverák, Quasiconvex functions with subquadratic growth. Proc. Roy. Soc. London, Vol. 433A 1991, pp. 723-725. | MR 1116970 | Zbl 0741.49016

[21] V. Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh 120A, 1992, pp. 185-189. | MR 1149994 | Zbl 0777.49015

[22] L. Tartar, The compensated compactness method applied to systems of conservation laws. In "Systems of Nonlinear Partial Differential Equations "; J. M. BALL (ed.), 1983 (D.Reidel Publ. Company), pp. 263-285. | MR 725524 | Zbl 0536.35003

[23] L. Tartar, On separately convex functions. In "Microstructure and Phase Transition" (eds.) D. KINDERLEHRER, R. JAMES, M. LUSKIN and J. L. ERICKSEN. The IMA volumes in mathematics and its applications, Vol. 54, 1993 (New York: Springer). | MR 1320538 | Zbl 0823.26008

[24] F.J. Tepstra, Die darstellung der biquadratischen formen als summen von quadraten mit anwendung auf die variationsrechnung. Math. Ann., Vol. 116, 1938, pp. 166-180. | Zbl 0019.35203

[25] K.-W. Zhang, A construction of quasiconvex functions with linear growth at infinity. Ann. Sc. Norm. Sup. Pisa Serie IV, Vol. XIX, 1992, pp. 313-326. | Numdam | MR 1205403 | Zbl 0778.49015

[26] K.-W. Zhang, On various semiconvex hulls in the calculus of variations. preprint, 1996.

[27] K.-W. Zhang, On the structure of quasiconvex hulls. preprint, 1996. | Zbl 0917.49014