@article{AIHPC_1999__16_2_137_0, author = {von der Mosel, Heiko}, title = {Elastic knots in euclidean 3-space}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {137--166}, publisher = {Gauthier-Villars}, volume = {16}, number = {2}, year = {1999}, mrnumber = {1674767}, zbl = {0935.49023}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1999__16_2_137_0/} }
von der Mosel, Heiko. Elastic knots in euclidean 3-space. Annales de l'I.H.P. Analyse non linéaire, Tome 16 (1999) no. 2, pp. 137-166. http://archive.numdam.org/item/AIHPC_1999__16_2_137_0/
[1] Reduction of Order for the Constrained Variational Problem and ∫ k2/2 ds, Amer. J. Math., 108, 1986, pp. 525-570 . | MR | Zbl
and ,[2] Minimal Surfaces I (Boundary Value Problems), II (Boundary Regularity), Grundlehren der math. Wissenschaften, vols. 295-296, Springer, Berlin Heidelberg New York, 1992. | MR | Zbl
, , and ,[3] Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattisimo sensu accepti, Bousquet, Lausannae et Genevae, 1744, E 65A. O.O. Ser. I, vol. 24. | Zbl
,[4] On the Möbius Energy of Knots and Unknots, Annals of Math., 139 no. 1, 1994, pp. 1-50. | MR | Zbl
, and ,[5] Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Math. Studies 105, Princeton Univ. Press, 1983. | MR | Zbl
,[6] Variational Problems with Obstacles and a Volume Constraint, Math. Z. 135, 1973, pp. 55-68. | MR | Zbl
and ,[7] Ein singuläres bewegungsinvariantes Variationsproblem, Math. Z., 37, 1933, pp. 381-401. | MR | Zbl
,[8] Möbius Energies for Knots and Links, Surfaces and Submanifolds, Geometric Topology, Proc. Georgia International Topology Conference, 1993, (ed. W.H. Kazez), AMS/IP Studies in Advanced Math., vol. 2, 1996, pp. 570-604. | MR | Zbl
and ,[9] Knotted Elastic Curves in R3, J. London Math. Soc., (2), 30, 1984, pp. 512-520. | MR | Zbl
and ,[10] Curves in the Hyperbolic Plane and Mean Curvature of Tori in 3-Space, Bull. London Math. Soc., 16, 1984, pp. 531-534. | MR | Zbl
and ,[11] The Total Squared Curvature of Closed Curves, J. Differential Geometry , 20, 1984, pp. 1-22. | MR | Zbl
and ,[12] Curve Straightening and a Minimax Argument for Closed Elastic Curves, Topology, 24, no. 1, 1985, pp. 75-88. | MR | Zbl
and ,[13] Energy of a Knot, Topology, 30, 1991, pp. 241-247. | MR | Zbl
,[14] Closed Curves of Least Total Curvature, Preprint, SFB 382 Univ. Tübingen, Report Nr. 13 (1995).
,[15] Über das Minimum des Integrals ∫s2 s1 F(x, γ, υ, κ)ds, Sitzungsber. Kaiserliche Akad. Wiss., Wien. Math.-nat. Kl., 69, 1910, pp. 1257-1326. | JFM
,[16] Théorie des distributions, Hermann, Paris, 1966. | MR | Zbl
,[17] Higher Integrability from Reverse Hölder Inequalities, Indiana Univ. Math. J., 29, no. 3, 1980, pp. 407-413. | MR | Zbl
,[18] Geometrische Variationsprobleme höherer Ordnung, Bonner Math. Schriften, 293, 1996. | MR | Zbl
,