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ABSTRACT. - This paper continues the study started in [12]. In the upper
half-plane, consider the elliptic ~- zUz ) = 0,
submitted to the nonlinear oblique derivative boundary condition Ux = UUz
on the axis x = 0. The solution of this problem appears to be the self-
similar solution of the heat equation with the same boundary condition. As
c goes to 0, the function U~ converges to the non trivial solution U of
the corresponding degenerate problem. Moreover there exists zo > 0 such
that U vanishes for z > zo, is C°° on ]0, z0[  R+, is continuous on the

boundary x = 0 and is discontinuous on the 
@ Elsevier, Paris

Key words: Nonlinear oblique derivative condition, degenerate elliptic problems, self-

similar solution.

RESUME. - Cet article poursuit Fetude commencee dans [12]. Soit, dans le
demi-plan supérieur, l’équation = 0,
soumise a la condition aux limites a derivee oblique non lineaire Ux = UUz
sur l’axe x = 0. La solution de ce probleme apparait comme la solution
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692 F. MEHATS AND J.-M. ROQUEJOFFRE

autosemblable de 1’ equation de la chaleur soumise a la meme condition aux
limites. Lorsque é tend vers 0, la fonction U~ converge vers la solution U du
probleme degenere correspondant. De plus il existe un reel zo > 0 tel que U
s’ annule pour z > zo, est C°° sur 0, zo [ x I~+, est continue sur la frontiere
x = 0 et discontinue sur le demi-axe {z = 0, x > 0 ~ . © Elsevier, Paris

1. INTRODUCTION AND MAIN RESULTS

This paper continues the study initiated in [12]. Let us first briefly recall
the problem dealt with and the main results obtained in [12].
We consider a nonlinear oblique derivative boundary condition for the

heat equation, in the half-plane (~+ _ ~ ( Z, X ) E R x 

The above system arises in plasma physics (see [11] ] for the modeling),
and describes the diffusive propagation of a magnetic field in a uniform
plasma, in presence of a perfectly conductive electrode which is placed on
the axis X = 0. The non-homogeneous condition at Z ~ -~ stands for
a source of magnetic field.

In some realistic physical situations, the parameter K turns out to be
very large [4]. The aim of this part is to let K - +00 in these equations,
thanks to an adequate scaling. Introduce the small parameter E = 1/ K2
and let us define the new variables

since we will only work in these variables we drop the primes at once.

Equation (1.1.NH) becomes

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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This paper is devoted to the behaviour of the self-similar solutions of

(1.2.NH) as c --~ 0. Recall that self-similar solutions of (1.2.NH) are steady
solutions in the variables

Hence the self-similar problem associated to (1.2.NH) reads

This system becomes degenerate as c -~ 0. Hence classical existence

and smoothness results [2] for elliptic equations cannot be applied directly.
Nevertheless, the scheme used in [12] to prove the C°° regularity of the
self-similar solution is robust enough with respect to c and will be adapted
here.

Let formally ~ --~ 0 in (1.3NH). The degenerate self-similar problem
writes ’

We denote by ’lj; (z) the solution of

Let us set u = U - ~; this is the solution of the associated homogeneous
problem. The starting point of our study is the following result, proved
in [ 12] :

THEOREM A.1.1 (Self-similar problem with E > 0). - There exists a
unique solution U E C°° ((~+ ) of ( 1.3NH). Moreover we have the following
properties:

. U is decreasing with and x. 
’ ’ ’ ~

Such a result may be classically obtained by a topological degree
argument combined with strong enough a priori estimates, as in [9]. We
presented in [12] an alternative method, based on estimates of (~~)~ and
Vol. 16, n° 6-1999.



694 F. MEHATS AND J.-M. ROQUEJOFFRE

( ~cz ) 3 at the boundary, which will turn out to be suitable in the present
context.

The main result of this paper is the following existence and uniqueness
theorem:

THEOREM l.l (Convergence to the solution of the degenerate problem).
- (i) As ~ ~ 0, and after extraction of a subsequence, the solution U~
of (1.3NH) converges in strong and a. e. to a weak solution U

of (1.4NH).
(ii) There exists zo > 0 such that this function U verifies

( 1.7) U is discontinuous along the axis z = 0, x > 0,

(1.9) the trace of U on {x = continuous.

This result illustrates the rapid penetration of the magnetic field at the
electrode: we have U > 0 on a nontrivial portion of the axis {x = 0, z > 0~,
whereas the magnetic field does not penetrate on the part {z > 0 ~ of the
cathode, i.e when x = +00.

Because we do not know a priori what regularity property is satisfied
by the weak solutions of (1.4NH), uniqueness is not completely trivial. A
relevant definition of weak solution may be the following one: a function
U(z, x) is an entropy solution of (1.4NH) if, besides satisfying the minimal
smoothness assumptions so that a weak formulation makes sense, has a BV
trace at {x = 0~ , whose z-derivative is bounded from above. The solution
constructed in Theorem 1.1 is trivially an entropy solution.

. Armed with this definition we are able to prove the following result:

THEOREM 1.2 (Uniqueness). - There is a unique entropy solution to

Problem (1.4NH). As a consequence, the whole sequence ( U~ ) ~ ~ o converges
to U.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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The reason why this theorem holds is that the function Y(z, x) _

/ U(z’, x) dz is a viscosity solution, in the sense given in Crandall-
Ishii-Lions [5], to the problem

A uniqueness result for the above problem will be obtained in a

straightforward way. Uniqueness of entropy solutions in this framework is
anything but surprising if one thinks about nonlinear conservation laws, from
which we have obviously borrowed the terminology: for a given function

f {x) E L1 (I~), a function u(x) is an entropy solution of Au + (u2)’ = f (x)
if and only if v(x) = x-~ u(y) dy is a viscosity solution of the Hamilton-
Jacobi equation Av + (v’)2 = dy. In this context, an entropy

solution is precisely a BV solution with bounded from above x-derivative;
see Lions-Souganidis [10] for more details.
As a final introductory remark, we point out that the results of papers 1

and 2 remain valid if the boundary condition is replaced by Bx = f ( B ) z ,
where f is a C1 nonnegative nondecreasing function.
The paper is organized as follows. The second section is mainly devoted

to the convergence property (i), namely stated in Proposition 2.1 below,
with (1.5) and (1.6). Lemma 2.2 implies (1.7). Next, the third section is
devoted to the proof of the regularity of the solution: (1.8) is stated in

Proposition 3.4 and (1.9) is stated in Proposition 3.5. Section 4 is devoted
to uniqueness of entropy solutions to (1.4NH). Finally, in the last section we
show some numerical simulations that enable to visualize the function U

and its different properties.

2. NON-TRIVIAL WEAK SOLUTIONS

First recall several notations used in [12]. If u is a function defined on
denotes its trace on the boundary {x = 0~, when it is well defined;

as soon as no confusion is possible, we shall also denote by u this trace.

The notation will stand for an integral calculated on the boundary and C
Vol. 16, n° 6-1999.
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will denote a generic positive constant independent of ~. For M > 0, we
denote by ~~ the strip

Finally, we will, as is classical, denote by Co (I~+) the set of all compactly
supported C°° funtions from I~+ to R.

Consider the solution U~ of (1.3NH) and set uE(z, x) = UE(Z, 
where 

,

The homogeneous problem associated to (1.3NH) writes

Remark that -~ 1 - H a.e. in where H denotes the Heaviside

function. Hence one can define similarly an homogeneous problem
associated to ( 1.4H), denoted ( 1.4NH), its solution being u = U - 1-1- H.

PROPOSITION 2.1. - Let u~ be the solution of ( 1.3H). Then u~ converges
-up to a subsequence- to a weak solution of ( 1.3H), u E L2 ( If8+ ) n 
We have u E for every M > 0, ux E L2 (~+), qu E and

the convergence holds in the following sense:

(2.1) u~ -~ u in L2(l~+) weak, in strong and a.e. in 

(2.2) u~ ~ Ux in L2(f~+) weak and Uz in weak *,

(2.3) qu in strong and a.e. in I~,

(2.4) ~yuz --~ quz in weak *,

where and denote respectively the spaces of bounded
measures on ~M and R. Moreover we have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Proof. - In [ 12] we remarked that ’lj;é: is a sub-solution of (1.3H) and we
constructed a super-solution for this problem, denoted ’lj;é: + 11~ : we have

In the rescaled variables, the function writes

Estimate (2.7) enables to obtain some informations on the behaviour of U~ .

Indeed, as c 2014~ 0, the lower bound ~~ converges to 1 - H uniformly on

each ] - oo, -a] U [a, +oo[, a > 0. Moreover, the upper bound ~~ + A~
converges to a function $ uniformly on the same interval, this limit ~

being defined by

Consequently we deduce (2.5) and (2.6).
Next, (2.7) and the exponential decay of the function A~ at the infinity,

uniform with respect to ~, enable to infer

By Theorem A.1.1, U~ is decreasing along z and x. Thus, since

uE: (z, x) = U~ (z, x) - is decreasing with respect to x and
vanishes as x - +00. Therefore we have

Vol. 16, nO 6-1999.
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and

Consequently

Hence, by compactness and trace theorems ([6], Chapter 5), there exists
u E verifying ~yu E and such that, after extraction of
a subsequence, we have (2.3), (2.4), and the L1, A4b, a.e., convergences
stated in (2.1) and (2.2). Remark that since 0  Ué  1, we also have,
after another extraction,

where U = u + 1 - H.

Next, multiply (1.3H) by integrate it over (~+ then integrate by parts.
We get the energy estimate

since we have 0  ~c~  1 and !7~  0 (Theorem A.1.1). Hence

This completes the proofs of (2.1) and (2.2).
It remains to see in what sense u is solution of the limiting model (1.4H).

For that it suffices to write a weak formulation of (1.3H). For all

cp E we have

Properties (2.1) and (2.2) allow us to pass to the limit in the three linear

terms. To treat the nonlinear one, we write it 1 2 / Since 03C6

is compactly supported, by (2.3) we have 03B3U03C6z in L (R) strong.
Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Hence we can pass to the limit in this term, thanks to (2.9). The asymptotic
problem writes finally

Remark that it is equivalent to write this weak formulation for the

function U, which is non homogeneous at the infinity:
(2.12NH)

The following lemma shows that the solution of the limiting sys-
tem (1.4H) is non trivial, i.e. that U is not equal to 1 - H:

LEMMA 2.2. - The limiting function U decreases with respect to z and x,
is discontinuous on the axis ~0~ x I~+ and u = U - 1 + H verifies

Proof. - The monotonicity properties are consequences of Theorem A.1.1
and Proposition 2.1. The discontinuity of U on ~Q~ x Ri is immediate and
comes from (2.7) and the properties of the limiting sub-/super-solutions
1 - H and ~.

Consider now the solution uE of (1.3H). Straightforward calculations give

Hence (1.3H) implies

Thanks to (2.7) and the decay properties of for every 8 > 0, there exists
a compact subset K8 C I~+ and 6-0 > 0 such that, for all c  co,

Vol. 16, n 6-1999.
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Thus

By (2.1) we can pass to the limit in this integral as c --~ 0, 6 being fixed;
then we let 8 --~ 0 to obtain (2.13). D

Set zo = sup{z > 0 : ~yU > 0 a.e. on [0, z~ ~ . This real number is well
defined thanks to (2.6) and Lemma 2.2, and verifies 0  zo  

3. REGULARITY OF THE SOLUTION

3.1. Smoothness on ]0, zo [ x [0, +oo[ [
To prove the smoothness of U on we mainly follow

the scheme of [12] and alternatively obtain interior and boundary estimates
for U~ and its derivatives. These estimates pass to the limit U, after

extraction of subsequences from UE;. The main difference with [12]
is that the equation (1.4H) inside I~+ is degenerate and the interior

Agmon-Douglis-Nirenberg estimates [2] cannot be applied in this context.
Let 8 > 0 be fixed such that 8  zo . The function U~ being non-

increasing along z, and thanks to the a.e. convergence of and to the

above definition of zo, we can find ~ > 0 and ~s > 0 such that

If b is small enough, these constant real numbers ~ and E 8 being fixed, we
define a cut-off function such that 0  

xi E C°° on ~0, and

If M is a positive constant, we also define a C°° cut-off function in x,
x2 (z, x) = x2 (x), such that 0  x2 (x)  1 and

The constants M and 8 will be once and for all understood to be large
-resp. small- enough for our purpose. We have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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In the following lemmas, we will obtain different estimates for u~, 
and their derivatives on cv and H. For that we use several test functions in the

weak formulation (2.11 ) of (1.3H). These test functions will take the form

Because of the cut-off function xl, these functions cp may not be C1 along
the axis {0~ x R+. Nevertheless they are regular enough, as (2.11) will
be written instead

In the sequel, or C(M, b) denote quantities which can depend on b
and M but are uniformly bounded with respect to ~.

LEMMA 3.1. - There exists ~03B4 > 0 such that, for ~  ~03B4, we have

Proof. - Let us first do the following remark. To in

the regular case studied in [12], it was sufficient to plug the test function
p in the weak formulation. Here, it is not so simple, since we do not
have an L2((~+) estimate of ~cz independent of c. Nevertheless, thanks to
a suitable test function, we shall obtain these two estimates by the same
time; they are stated in (3.6).

Setting

the idea of the proof is to take the test function = acp2 - 03B203C61 in (3.5),
if a and ,~ are positive real numbers that will be made precise later.

. We first consider only pi in (3.5); we treat separately the different
terms of this expression, using (2.10), Uz  0, ’lj;él  0 and the properties
of the cut-off functions xi and x2 (3.2), (3.3), (3.4). The first term is

Vol. 16, nO 6-1999.
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the first integral in the right hand side is 0(1) thanks to (2.10). For the
other terms of (3.5) we write

Plugging these estimates in (3.5), we obtain finally

. Next, with the test function cp2, (3.5) can also be written

We estimate the different terms as follows:

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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In the right hand side of this equality, by (2.10), the two integrals calculated
over are C(l). The boundary integral can also be written

To estimate the second term of the right hand side, it suffices to remark that

and

Therefore we have

The last term of (3.9) that we can estimate directly is

Finally (3.9) reads

. Let now a and ~3 be two positive real numbers. The test function
a’P2 - in (3.5) gives in fact the linear combination {,lj (3.8)+ a
(3.11)} :

where

By (3.1) and (3.2), we have UE(Z, 0) > r~ on the support of xi . Hence, for
a large enough and E  T/2, we have

Vol. 16, nO 6-1999.



704 F. MEHATS AND J.-M. ROQUEJOFFRE

Let us fix such an a ; there holds

To estimate the integral Ii, we use the inequality

Hence, if we write, for x  M + 1,

and setting A = we get

Therefore (3.12) yields

Next by (3.2) it comes

(3.6) is proved. Remark that this estimate works because we consider only
the z > 0.

The estimate (3.7) is immediate and comes directly from (1.3), thanks to
(2.10) and (3.6), and since on 03A9 we have 0 ~ x ~ M. D

LEMMA 3.2. - There exists ~03B4 > 0 such that for ~  ~03B4 we have

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Proof. - To prove this lemma we will show the following preliminary
estimate:

For that, we use the test function

in (3.5). Straightforward computations lead to

where

The term L2 is 0(1) thanks to (2.10), (3.4) and 0  uE  1. For the

integral L3 we recall moreover that xl (z) ~  ~ z ~ and use (3.6) to get
L3 = 0(1). Next, since in fact we need a lower bound for these terms,
for L4 it suffices to write

thanks to (3.6). Hence (3.16) reads

The four terms of the left hand side can in fact be estimated separately
thanks to sign considerations, if we come back to the non-homogeneous

Vol. 16, nO 6-1999.
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functions Uz  0 and U~ = u~  0. As previously in
Lemma 3.1, we only have to take care of the fact that is not bounded
in L°° . Remark that

thus

Therefore, from (2.10), (3.10) and (3.17), we deduce the estimates

which finally imply (3.15).
The same kind of calculations (but easier), which we shall not develop

here, can lead to the same kind of estimate as (3.15), in which we replace
the z under the integral by an c. We only state it here; it will be useful

in the sequel of the proof:

To prove (3.14), consider now in (3.5) the test function

After some calculations we obtain

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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In the right hand side of this equality, the integrals / can be estimated

thanks to (3.15) and (3.18), and the boundary integral can be estimated
thanks to (3.6), (3.10), (3.17) and Uz  0. For the left hand side, by (3.1)
and (3.2) it suffices to take c  r~2 /6 to obtain

thus (3.14) is proved.

LEMMA 3.3. - For é small enough we have

To prove the lemma we will again use a weak formulation of this system
and choose different test functions. Recall that by (3.2) and for every
integer k > 1 there holds

With the test function p = ~21~2 vE:, we obtain

Vol. 16, nO 6-1999.
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where

These four terms are (9(1) thanks to

This proves (3.19). To show (3.20), similarly to (3.6), we use the test

function

The calculations are very close to those of Lemma 3.1; we use (3.6), (3.10),
(3.19) and (3.22) to obtain

where

We just notice that the exponent of xi in p has been chosen to estimate,
thanks to (3.19), the following term that appears in the calculations (in
the right hand side):

To conclude, it suffices to take the same a and ~3 as for (3.12), then to
estimate Zl as Zl. D

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire


