On the minimizers of the Ginzburg-Landau energy for high kappa : the axially symmetric case
Annales de l'I.H.P. Analyse non linéaire, Volume 16 (1999) no. 6, pp. 747-772.
@article{AIHPC_1999__16_6_747_0,
     author = {Aftalion, Amandine},
     title = {On the minimizers of the {Ginzburg-Landau} energy for high kappa : the axially symmetric case},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {747--772},
     publisher = {Gauthier-Villars},
     volume = {16},
     number = {6},
     year = {1999},
     zbl = {0940.35183},
     mrnumber = {1720515},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_1999__16_6_747_0/}
}
TY  - JOUR
AU  - Aftalion, Amandine
TI  - On the minimizers of the Ginzburg-Landau energy for high kappa : the axially symmetric case
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1999
DA  - 1999///
SP  - 747
EP  - 772
VL  - 16
IS  - 6
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_1999__16_6_747_0/
UR  - https://zbmath.org/?q=an%3A0940.35183
UR  - https://www.ams.org/mathscinet-getitem?mr=1720515
LA  - en
ID  - AIHPC_1999__16_6_747_0
ER  - 
%0 Journal Article
%A Aftalion, Amandine
%T On the minimizers of the Ginzburg-Landau energy for high kappa : the axially symmetric case
%J Annales de l'I.H.P. Analyse non linéaire
%D 1999
%P 747-772
%V 16
%N 6
%I Gauthier-Villars
%G en
%F AIHPC_1999__16_6_747_0
Aftalion, Amandine. On the minimizers of the Ginzburg-Landau energy for high kappa : the axially symmetric case. Annales de l'I.H.P. Analyse non linéaire, Volume 16 (1999) no. 6, pp. 747-772. http://archive.numdam.org/item/AIHPC_1999__16_6_747_0/

[1] A. Aftalion, On the minimizers of the Ginzburg-Landau energy for high kappa: the one-dimensional case, EJAM, Vol. 8, 1997, pp. 331-345. | MR | Zbl

[2] P. Baumann, D. Phillips and Q. Tang, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Preprint, 1996.

[3] H. Berestycki, A. Bonnet and S.J. Chapman, A semi-elliptic system arising in the theory of superconductivity, Comm. Appl. Nonlinear Anal., Vol. 1, 3, 1994, pp. 1-21. | MR | Zbl

[4] M.S. Berger and Y.Y. Chen, Symmetric Vortices for the Ginzberg-Landau Equations of Superconductivity and the Nonlinear Desingularisation Phenomenon, J. Func. Anal., Vol. 82, 1989, pp. 259-295. | MR | Zbl

[5] F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vortices, Birkhäuser, 1994. | MR | Zbl

[6] C. Bolley, Solutions numériques de problèmes de bifurcation, RAIRO Anal. Num., Vol. 14, 1980, pp. 127-147. | Numdam | MR | Zbl

[7] S.J. Chapman, Nucleation of superconductivity in decreasing fields I, Europ. J. Appl. Math., Vol. 5, 1994, pp. 449-468. | MR | Zbl

[8] S.J. Chapman, Nucleation of superconductivity in decreasing fields II, Europ. J. Appl. Math., Vol. 5, 1994, pp. 469-494. | MR | Zbl

[9] S.J. Chapman, A mean-field model of superconducting vortices in three dimensions, SIAM J. Appl. Math., Vol. 55, 1995, pp. 1259-1274. | MR | Zbl

[10] S.J. Chapman, Motion of vortices in type II superconductors, SIAM J. Appl. Math., Vol. 55, 1995, pp. 1275-1296. | MR | Zbl

[11] S.J. Chapman, S.D. Howison and J.R. Ockendon, Macroscopic models of superconductivity, SIAM Review, Vol. 34, 4, 1992, pp. 529-560. | MR | Zbl

[12] Y.Y. Chen, Nonsymmetric vortices for the Ginzberg-Landau equations on the bounded domain, J. Math. Phys., Vol. 30, 1989, pp. 1942-1950. | MR | Zbl

[13] Q. Du, M.D. Gunzburger and J.S. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Review, Vol. 34, 1, 1992, pp. 54-81. | MR | Zbl

[14] C.M. Elliot, H. Matano and Tang Qi, Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity, Europ. J. Appl. Math., Vol. 5, 1994, pp. 431-448. | MR | Zbl

[15] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer, Berlin, 1983. | MR | Zbl

[16] V.L. Ginzburg and L.D. Landau, On the theory of superconductivity, Soviet Phys. JETP, Vol. 20, 1950, p. 1064.

[17] H.G. Kaper and M.K. Kwong, Uniqueness of non-negative solutions of semilinear elliptic equations, Nonlinear Diffusion Equations and Their Equilibrium States, II, W. M. Ni, L. A. Peletier and J. Serrin (eds.), MSRI Conf. Proc., Springer-Verlag, New York, 1988, pp. 1-17. | MR | Zbl