@article{AIHPC_1999__16_6_747_0, author = {Aftalion, Amandine}, title = {On the minimizers of the {Ginzburg-Landau} energy for high kappa : the axially symmetric case}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {747--772}, publisher = {Gauthier-Villars}, volume = {16}, number = {6}, year = {1999}, mrnumber = {1720515}, zbl = {0940.35183}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_1999__16_6_747_0/} }
TY - JOUR AU - Aftalion, Amandine TI - On the minimizers of the Ginzburg-Landau energy for high kappa : the axially symmetric case JO - Annales de l'I.H.P. Analyse non linéaire PY - 1999 SP - 747 EP - 772 VL - 16 IS - 6 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_1999__16_6_747_0/ LA - en ID - AIHPC_1999__16_6_747_0 ER -
%0 Journal Article %A Aftalion, Amandine %T On the minimizers of the Ginzburg-Landau energy for high kappa : the axially symmetric case %J Annales de l'I.H.P. Analyse non linéaire %D 1999 %P 747-772 %V 16 %N 6 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_1999__16_6_747_0/ %G en %F AIHPC_1999__16_6_747_0
Aftalion, Amandine. On the minimizers of the Ginzburg-Landau energy for high kappa : the axially symmetric case. Annales de l'I.H.P. Analyse non linéaire, Volume 16 (1999) no. 6, pp. 747-772. http://archive.numdam.org/item/AIHPC_1999__16_6_747_0/
[1] On the minimizers of the Ginzburg-Landau energy for high kappa: the one-dimensional case, EJAM, Vol. 8, 1997, pp. 331-345. | MR | Zbl
,[2] Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Preprint, 1996.
, and ,[3] A semi-elliptic system arising in the theory of superconductivity, Comm. Appl. Nonlinear Anal., Vol. 1, 3, 1994, pp. 1-21. | MR | Zbl
, and ,[4] Symmetric Vortices for the Ginzberg-Landau Equations of Superconductivity and the Nonlinear Desingularisation Phenomenon, J. Func. Anal., Vol. 82, 1989, pp. 259-295. | MR | Zbl
and ,[5] Ginzburg-Landau Vortices, Birkhäuser, 1994. | MR | Zbl
, and ,[6] Solutions numériques de problèmes de bifurcation, RAIRO Anal. Num., Vol. 14, 1980, pp. 127-147. | Numdam | MR | Zbl
,[7] Nucleation of superconductivity in decreasing fields I, Europ. J. Appl. Math., Vol. 5, 1994, pp. 449-468. | MR | Zbl
,[8] Nucleation of superconductivity in decreasing fields II, Europ. J. Appl. Math., Vol. 5, 1994, pp. 469-494. | MR | Zbl
,[9] A mean-field model of superconducting vortices in three dimensions, SIAM J. Appl. Math., Vol. 55, 1995, pp. 1259-1274. | MR | Zbl
,[10] Motion of vortices in type II superconductors, SIAM J. Appl. Math., Vol. 55, 1995, pp. 1275-1296. | MR | Zbl
,[11] Macroscopic models of superconductivity, SIAM Review, Vol. 34, 4, 1992, pp. 529-560. | MR | Zbl
, and ,[12] Nonsymmetric vortices for the Ginzberg-Landau equations on the bounded domain, J. Math. Phys., Vol. 30, 1989, pp. 1942-1950. | MR | Zbl
,[13] Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Review, Vol. 34, 1, 1992, pp. 54-81. | MR | Zbl
, and ,[14] Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity, Europ. J. Appl. Math., Vol. 5, 1994, pp. 431-448. | MR | Zbl
, and ,[15] Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer, Berlin, 1983. | MR | Zbl
and ,[16] On the theory of superconductivity, Soviet Phys. JETP, Vol. 20, 1950, p. 1064.
and ,[17] Uniqueness of non-negative solutions of semilinear elliptic equations, Nonlinear Diffusion Equations and Their Equilibrium States, II, W. M. Ni, L. A. Peletier and J. Serrin (eds.), MSRI Conf. Proc., Springer-Verlag, New York, 1988, pp. 1-17. | MR | Zbl
and ,