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ABSTRACT. - We prove that the global minimizer of the Ginzburg-
Landau functional of superconductors in an external magnetic field is,
below the first critical field, the vortex-less solution found in (S. Serfaty,
to appear). @ 2000 Editions scientifiques et médicales Elsevier SAS

RESUME. - On montre que le minimiseur global de la fonctionelle
de Ginzburg-Landau en supraconductivite, avec champ magnetique
exterieur inferieur au premier champ critique est la solution sans vortex
trouvee dans (S. Serfaty, a paraitre). @ 2000 Editions scientifiques et
médicales Elsevier SAS
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1. INTRODUCTION

We are interested in this paper in describing the minimizers of the
Ginzburg-Landau functional

that corresponds to the free energy of a superconductor in a prescribed,
constant magnetic field hex . Here, Q C R2 is the smooth, bounded,
and simply connected section of the superconductor; and the unknowns
are the complex-valued order parameter u E H 1 (SZ, C~) and the 
connection A E H 1 ( SZ , LL~2 ) . The induced magnetic field h is defined

by h = curl A. The order parameter u indicates the local state of the
material: u ~ ( is the density of superconducting electron pairs, so that,
where 1, the material is in its superconducting state, whereas where
2~ 0, it is in its normal state. Finally K = 1 / e > 0 is the Ginzburg-

Landau parameter depending on the material, and we are interested in
the case of superconductors with high kappa. We stress that no boundary
conditions are imposed on (u, A), the characteristics of the solutions to
the minimization problem are governed solely by hex .

Minimizers of J (u, A) solve the associated Euler equations,

It turns out that a key physical feature of solutions to (G.L.) is the

existence, for a certain range of values of hex, of vortices, i.e., isolated
zeros of u at which u has a nonzero degree: u / ( u [ restricted to a small
circle around the zero has a non-zero winding number as a map to the
unit circle. Away from these zeros, 1. Describing solutions to (G.L.)
then typically consists in describing the vortex structure of the solutions,
i.e., to determine the number, degree and position of vortices.
The difficulty here is that without boundary conditions, there is no

a-priori bound on the number of vortices. Even if boundary conditions
are imposed, the problem of defining mathematically and describing the
vortex structure of solutions is not an easy one. This was done in [3] for
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the functional

supplemented by a Dirichlet boundary condition g : Sl . There, a
vortex structure is shown to exist for minimizers (and even critical points)
of F (u ) when 8 -~ 0. Moreover it is proved that there are exactly d =
I deg(g) vortices, and their position is determined. In [5] the functional
(1.1) is studied with hex set to zero and replaced by a gauge invariant
variant of the Dirichlet condition. There again the vortex structure is
shown to exist when 8 is small, and results similar to those in [3] are
obtained about the number and position of the vortices.

In [13,14] and [15], the second author studied minimizers of (1.1)
without boundary condition. For more details on the notations and

physical description of superconductors, we refer to [13] and the
references therein. Let us just say that it is observed that for small values
of the applied field hex, the material is superconducting everywhere
(there are no vortices), the magnetic field does not penetrate it and

approximately satisfies the London equation

This state is called the Meissner state, corresponding to vortex-less
solutions in the terminology of [13] and [ 14], the corresponding solution
(u, A) to (G.L.) being called the Meissner solution. For hex higher than
some critical value the vortex-less solution is no longer energy
minimizing.

In [13], to replace the absence of boundary conditions and thus the
lack of a-priori estimates on the number of vortices, the functional

J (u , A) was minimized on a subdomain of H1(Q,C) x H 1 ( S2 , II~.2 ) .
More precisely, choosing some (large) number M > 0, the minimization
was performed on

and the following theorem was proved:
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THEOREM 1 [ 131. - There exist k ~ = 1 / (2 max k2 = O~ ( 1 ) and
k3 = oE ( 1 ), such that

and such that for c  ~o, the following holds:
- Hcl’ a solution of (G.L.) that is minimizing in D exists, and

satisfies 1 2  |u   I ;
- if H~I + He + 0£(1), a solution of (G.L.) that is

minimizing in D exists, it has a bounded positive number of vortices
ai of degree one, such that dist(a~i,^) ~ 0 where

and 3C > 0, dist(af, a~ ) > i. e., tend to distinct

points E A.

In addition, it is proved in [15] that the Meissner solution found for
He still exists for Hc] (even though it is then only locally

minimizing in D), and is unique among vortex-less solutions.
H~l is known as the first critical field. It is the value of hex for which

the energy of the Meissner solution becomes equal to the energy of a
single-vortex configuration. Here, we wish to know whether or not, for

the Meissner solution is a global minimizer of the energy in
addition to being a minimizer in D.

This question arises naturally for all the vortex solutions found in [13]
and [14] that are minimizers in D, but that are all likely to be global
minimizers. However, the proof in [13] and [14] uses repeatedly the a-
priori bound on the number of vortices given by (1.4). Here, without this
upper bound, we are still able to prove a result about vortex-less solutions:

THEOREM 1. - There exists a value H~~ ^J HCl (more precisely _

~ci + O ( ~ log ~ log ~ ~ ~ ) ), such that, for sufficiently small ~, if 
a globally minimizing solution of (G.L.) satisfies u ~ ( > 3 /4 on Q, and
coincides with the solution found in Theorem 1 of [13].

Thus, we answer positively the question, though we have an impreci-
sion on H~l that we were not able to avoid.

In order to prove this theorem, we consider a minimizing solution
of (G.L.) and assume it has possible vortices. We use a technique of
R. Jerrard [7] to construct balls B; = B (a; , r) of size r ^~ with

sufficiently high a, such that
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where we use the notation

The lower bound (1.7) was known to be true, see [3], under some
assumptions on the restriction of u Here, adapting slightly the
techniques in [7], we are able to avoid making these assumptions and to
construct these balls even though, in contrast to [13,14] and [15], their
number is not bounded a priori independently of 8.
Then the key argument of the proof is to split conveniently the energy

in a way that is similar to, but slightly different from the one used in [13],
in order to obtain a lower bound of the energy on Q B Ui Precisely, we
find that for a minimizer (u, A),

as 8’ --~ 0. In the above expansion Jo is roughly the minimal energy of
a vortex-less configuration; and ~o is a negative function depending only
on the domain Q (see [13] or Section 2). Putting together (1.7) and (1.8),
and using the fact that the energy of a minimizer must be no greater than
Jo allows to conclude that vortices are not present if hex is less than some
number

the right-hand side is precisely the H~1 computed in [13].
The idea is the same as in [13]: a vortex of degree d "costs" almost

to make (see (1.7)), while it can decrease leu, A) by at most
(see (1.8)). Note that the choice of r = for the

size of the balls Bi is dictated by the fact that it is the largest radius for
which we can prove that the expansion (1.8) is valid.
Of course, the structure of global minimizers for hex> H~1 is still

open. We study them in [ 11 ], give an estimate on their energy, and
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we expect that the number of vortices is equivalent to hex as soon as
hex » 

2. PROOF OF THE THEOREM

2.1. Preliminary results and notations

We consider (u, A) such that

By a standard argument, this infimum is achieved and yields a solution of
the Ginzburg-Landau equations. We recall that, as in [13], for a suitable
choice of gauge, div A = 0, and there is a function $ E H2(Q, R) such
that

thus

and

Our solution (u, A) is easily seen to satisfy

In the sequel, C denotes any positive constant independent from 8.
Since the value of H~l computed in [13] is of the order of [log el, we

will assume from now on that

Considering the London equation (1.3), we are led as in [13] to introduce
~o, the solution of



125E. SANDIER, S. SERFATY / Ann. Inst. Henri Poincaré 17 (2000) 119-145

The approximate minimal vortex-less configuration is 1, Ao -
hex and, as in [ 13], we let

Note that (uo, Ao) is only a solution to the second (G.L.) equation and
not to the first one, therefore it is not the Meissner solution. However,
it is proved in [13] that the infimum of the energy among vortex-less
configurations in D is Jo + o ( 1 ) as 8 - 0.
As in [13], we decompose $ as

so that

We state some results borrowed from [13] that are going to be useful in
the sequel.
LEMMA 2.1. - Let (u, A) be a solution of (G.L.). The following holds:

If (u, A) is in addition a minimizer of the energy, then

Proof. - All the assertions have been proved in [13] except the last one.
In view of (1.1) and (2.9),

which is equivalent to
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Hence,

Thus, in view of (2.8),

We then need to define the vortices of u with their degrees, by defining
balls (Bi)iEl, such that > 3/4 on SZB ~i~I Bi, and di = deg(u, 
As already mentioned, we achieve this by adjusting a result of Jerrard
[7], to obtain the following proposition, the proof of which is deffered to
Section 3.

PROPOSITION 2.1.-Let u E such that C/E,
and F(u)  Ch2ex. Then, for any a > 0, there is an Eo > 0 such that ~~ 
~0 there exists a finite family of disjoint balls (Bi )i~I = (B (ai , ri ))i EI such
that

where di = deg(u, a Bi ) if Bi C Q, and di = 0 otherwise,

Proof. - See Proposition 3.2. a

2.2. Splitting of the energy

Let

where is the family of balls given by Proposition 2.1. Recall that
they have radii ri less than where a is to be chosen below.
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LEMMA 2.2. - We have following identity:

Proof - From (2.2) and (2.6),

Moreover,

To finish the proof of Lemma 2.2 we need the 0

LEMMA 2.3. - If a > 5,

Proof - We start with the same method as in [13]. First,

where we used (2.3), (2.13), (2.14), and_(2.10). It is here that the size of
the balls Bi is important. Then, letting Q = (J, Bi ,

Setting v = and integrating by parts, we find, exactly as in the proof
of Lemma IV.3 of [13], that
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We claim that, letting

To prove this claim, we use the same proof as in [13] (Lemma IV.3),
different from that of [5] which does not adjust to a possible divergent
number of balls. Let

Ui does not intersect ~Bi and by Stokes’ theorem

Hence, as a > 5,

On the other hand,
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But, by definition of == 1 /2 on ~Ui, hence

Combining (2.20) and (2.21 ), we conclude that

and (2.19) is proved.
We now deal with the balls that intersect We claim that

The proof of this claim is almost the same as that of (2.19). Indeed, since
ço = 0 on letting Ui = Bi n 1/2},

Using (2.18) and (2.19), the above claim and the fact that Card I  Ch x
prove the lemma. a
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Proof of Lemma 2.2 completed. - Combining (2.15), (2.16) and (2.17),
we are led to

From the upper bound (2.9), we know that

hence

and similarly

With (2.22), the lemma is proved. D

LEMMA 2.4. - We have the following identity:

Proof. - Using the decomposition (2.6),
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But, from [13], Section 4 (using (2.4)),

and

Therefore,

This completes the proof. 0

Combining Lemmas 2.2 and 2.4, we obtain the following expansion of
the energy:

Notice that this expansion is quite similar to that of [13], but the terms in
~ are treated differently and gathered in positive expressions.
We need a last lower bound:

LEMMA 2.5. -
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Proof - Indeed,

But,

similarly to the beginning of the proof of Lemma 2.3. Hence,

From this lemma, we deduce that

and this last expression can be bounded from below by (2.12).

2.3. End of the proof of the theorem

Considering our minimizing solution, we deduce from (2.24), Lemma
2.5, and (2.12), that
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On the other hand, by minimality,

thus, as ~o is negative,

If I di I ~ 0, we deduce that

But,

thus

Consequently, if hex  we must have di = 0, Vi E I. Then, , with
(2.24) and Lemma 2.5,

implying

We conclude that 3/4 in Indeed, it is well known from [3] that
if  3/4, there exist constants ~,, ,u. > 0 such that

contradicting (2.28).
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Knowing that u is vortex-less, one may re-use the computations of [13]
to find that

where V (~’ ) > 0. Hence F (u)  o( 1 ), and by definition (u, A) ED. This
proves that for hex  H~~ , (u, A) coincides with the unique Meissner
solution found in [13] and [15].
The theorem is proved.

3. CONSTRUCTION OF THE BALLS

In this section, we use the method of R. Jerrard introduced in [7], in
order to construct balls containing all the zeros of u, on which we have a
suitable lower bound on F8 of the order jr The size of the balls

has to be large enough so that most of the energy Fg is concentrated in
these balls, but it has to be smaller than (log E ~ -5 as we saw in Section 2.
We follow almost readily the proofs of [7].

3.1. Main steps

First, we include the set  3/4} in well-chosen disjoint
"small" balls B; of radii ri > ~ such that

where C is a constant. This is possible according to the following lemma,
adjusted from [7] :

LEMMA 3.1. - Let u : Q - C be such that  C/E. Then there
exist disjoint balls Bl , ..., Bk of radii ri such that

Then the proof involves dilating the balls Bi into balls B;. A lower
bound for is obtained by combining the lower bound for
F8(u, and a lower bound of the energy on the annulus 
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LEMMA 3.2. - Vr > s > e, if Br and BS are two concentric balls of
respective radii rand s, and if u : -~ C is such that u ~ > 3/4, d =

then

where As is a function that satisfies the following properties:

( 1 ) As (s) Isis decreasing on 
(2) As (s) /s ~ 
(3) there exist to > 0 such that if ~  eo and e  t  to then

Thanks to this lemma, if

where d = deg(u, 9B), and r is the radius of B, if B’ is the dilated ball,
and if 3/4 on then an estimate of the type (3.2) is still true
on B’.
Thus we start with the balls Bi given by Lemma 3.1, then make them

grow progressively. Say the growth rate is governed by a parameter s, we
thus construct a family B(s) of disjoint balls. To keep this family of balls
disjoint, when some of them intersect, we merge them into a larger ball
of radius equal to the sum of the radii of the merged balls. If the growth-
rates of the balls have been properly synchronized, then the lower bounds
for the energy on each of the merged balls add up nicely so that a lower
bound of the type (3.2) is still true for the larger ball. We then resume the
dilation, etc., until we reach the size of balls that we wish.
The following proposition sums up the whole growth process:

PROPOSITION 3.1. - Let u : S2 --~ C~ be such that C/e; and
be a family of balls of radii rl satisfying the results of Lemma 3.1.

Let
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Let also

Then, for every s > so, there exists a family ,l3(s) of disjoint balls
B (s ) , ..., (s ) of radii ri (s ) such that

( 1 ) the family of balls is monotone, i. e., if s  t then

(2) for every i, Fs (u, Bi (s)) > ri where As is defined in
Lemma 3.2,

(3) if Bi (s ) C S2 and di (s ) = deg (u , aBi(s)), then ri (s ) > 

We then get as a consequence the following proposition, that was stated
as Proposition 2.1 in Section 2, and which yields the final balls that we
needed :

PROPOSITION 3.2. - Let u : S2 --~ C be such that and that

C ~log c ~2. Then, for any a > 0 there exist disjoint balls (Bi)iEI
of radii ri such that, for sufficiently small c,

Proof - We first consider the balls given by Lemma 3.1, and then
apply Proposition 3.1 to get bigger balls. We need to check that so is small
enough to be able to apply Proposition 3.1 for s large enough. Indeed,
so = min{i|di~0} (ri /di ), but from assertion (3) of Lemma 3. l,

so that so x We can thus apply Proposition 3.1 for all s ?
C ~ ~ log ~ ~ 2 . We choose in particular
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Proposition 3.1 yields final balls such that

with

Therefore,

and from Lemma 3.2 (assertion (3)),

We thus have the lower bound (4) on F~ .
We then show that (3) is true. We know that C ~log ~ ~ 2.

Combining this with (3.5), we get

But, as in view of (3.4),

Hence, if 8 is sufficiently small,

which is the desired estimate.
There only remains to show that (2) is true. This is easy since in

Lemma 3.1, each ball satisfies Bi with ri > E, hence
carries an energy that is bounded from below by a constant independent
from g. As F~  Cllog e12, we see that the number of these balls has to
be bounded by C ~ log ~ ~ 2. Then, the procedure of Proposition 3.1 does not
increase the number of balls, so that property (2) is true. a
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3.2. Proof of Lemma 3.1

We use the notation S (x, r ) for the circle in of center x and radius r.

We begin with the following lemma, taken from [7] :

LEMMA 3.3. - Let u : St --~ C, where Sr is a circle of radius t in II~2
such that t > E. Let m = mins, |u| and, if m ~ 0, d = deg (u , St ) . If m = 0,
let d = 0. Then, assuming 0  m  1,

where C2 is an absolute constant.

Proof - See [7], Theorem 2.1. D

We also have the following variant of Lemma 3.3 (Lemma 2.4 in [7]):

LEMMA 3.4. - If u : S2 -~ C, there exists p(Q), C(Q) > 0 such that
Vx E SZ, bE  r  p, letting m = minSr~03A9 |u (,

Proof - See [7]. CI

We then divide the proof of Lemma 3.1 in five steps.
Step 1. We wish to include {H  3/4} in balls. Let Si , ... , Sk be

the connected components of {Iul  4/5} that intersect  3/4}, and
jci e S1, ... , xk e Sk be such that  3 /4. Also, for every i let

We claim that

Indeed from the hypothesis |~u| I  C 1 e, we get as in (2.29) that

Fs (u , B (xi , ri ) n S2 ) > C. Therefore if ri  2~, the claim is true.
If ri > 2e then, from Lemma 3.4, as Vt E [~, r], lul I  4/5

by definition of r~ ,
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We deduce that

proving the claim in this case also.
Step 2. For simplicity, we write Bi for B (xi , r; ) . We claim that 

either B~ C Bi (in this case, we drop B j) or x j ft Bi.
Indeed, assume that xj E B/. By definition of the balls Bi, ~Bi n

Uf Sf = 0, thus

Since xj E B/, S j 0, using the connectedness of Sj, S j C B; , and
we can drop B j .
The claim is proved.
Step 3. Dropping the unnecessary balls, we reduce to balls B; such that

It follows from the Besicovitch covering lemma (see for instance [17],
p. 44), any x E U Bi belongs to at most N of the balls, where N is an
absolute constant.

Step 4. Naming Cl the connected components of Ui Bi, this implies
that

where we have used (3.9).
Step 5. Each Cl can be included in a ball B; of radius

These balls Bi can be included in bigger balls Bi’ the following way: if
Bl and Bj intersect, we merge them into a ball of radius no higher than
r; + etc., until all intersecting balls are merged. Hence, we are left
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with a family B;’ of disjoint balls of radii ri’. This family satisfies

As the Ci are disjoint, we have

with (3.10). Using (3.11) and (3.12), we are led to

The family (Bi’) satisfies the desired conditions, hence the proof is
complete.

3.3. Proof of Lemma 3.2

Under the assumptions of Lemma 3.3,

where

and 0  q  1 is a constant.
Indeed, using Lemma 3.3, we can bound the right-hand side of (3.7)

from below by

where C’ = max(2, C2) > 2. This uses the fact that 0  m  1. Then

we minimize with respect to m E [0, 1]. This yields (3.9) with q =

1/(C’ - 1).
We then define
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where Ci is defined in Lemma 3.1 Also, we let

We prove the properties on As. (1) is true because As is the primitive of
Às which is easily seen to be decreasing. From this, we deduce that

so that (2) is true. There remains to prove assertion (3). Recall that

Denoting by C, C’ generic positive constants, if C is large enough 1 ?
(1 1 - Cx, whenever x  1 / C . On the other hand, it is easy
to check that if t > C’ 8, with C’ large enough, then a/b  1 / C. Thus we
may write

It is easy to check that

and that

if s  to. Finally, combining (3.16) with the fact that
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the assertion is proved.
From (3.13), (3.14), and (3.15), we deduce that Vr > s > ~,

The lemma is proved.

3.4. Proof of Proposition 3.1

First of all, letting B(so) be the family of balls given by Lemma 3.3,
we check that properties (2), (3) are verified for s = so. Indeed, from
Lemma 3.1,

while

Thus, the second property is true. Property (3) results directly from the
definition of so. Notice that  3/4} is contained in the initial family
B(so).
Now we let I be the largest interval containing so such that Vs E I

there exists a finite family of disjoint balls B(s) verifying properties ( 1 )-
(3) above. We already know I is not empty. We now prove that I is open.

Suppose [so, C I. We wish to define a family for t E si +

a], for some a > 0. Three cases occur.
Case 7. For the family all the inequalities in (3) are strict, i.e.,

> Vi such that Bi C Q. In this case we let Bi (t ) =

Bi (sl ), i.e., we do not change the balls. This defines a family B(t) of
disjoint balls that verifies (1) trivially, (2) also since by Lemma 3.2-

1E (sl ) /sl for t > s1. Finally (3) is verified at least when

t E si + a] , a > 0 not too large.
Case 2. There is equality in (3) for, say, balls B 1 (s 1 ) , ... , but

all the balls have disjoint closures. In this case the family B(t) for t > sj
is defined by:
- The ball Bi(t), 1  i  .~ has the same center as and its radius

is such that = = as long as Bi(t) C Q ,
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which is true when t E si + a] , a > 0 not too large. (The degree
remains constant as lul > 3 /4 on > so . ) In particular
the balls are growing.

- The other balls remain unchanged.
The balls defined this way remain disjoint for t > si not too large.
Property (1) obviously is still true, (3) also. Property (2) remains true
in an obvious way for the static balls, as As (s) /s is decreasing. For the
increasing ones, we just use Lemma 3.2, which yields

But, we know that for the growing balls, we have ri (s 1 ) = and

ri (t) = Hence, with the constancy of the degree,

Case 3. There is equality in (3) for some of the balls in but, say,
~ ~ . Then we modify the family as follows: group

Bi (si ) and into a single larger ball B of radius + r2 (sl ) . If
B intersects, say, B3, enlarge it so that Bi U B2 LJ B3 C B and the radius
of B is r = ri + r2 + r3, etc.

Thus, we have a new family of balls ,t3’(sl ) whose closures are disjoint,
such that the union of the balls in this family contains the balls of 
that verifies properties (2) and (3). This last statement is obviously true
for the balls that have not changed in the process. We verify it for a ball
B E that results from grouping Bi,..., Bf E B(Sl).
- Property (2) is verified since
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- If B c Q and deg (u , aB) = d ~ 0 then d = ~ ~ di , where di =
deg (u , aBi). Thus

since for every i such that di ~ 0, ri > Thus property (3) is
verified. If d = 0, then the property is empty.

Now, to define B(t) for t > si we start from and use case 1 or

case 2.

It remains to prove that the interval I is closed. Indeed, suppose
[so, s 1 ) C I and that B(s) is defined on this interval by the above
procedure. We wish to define First note that since the number

of balls in B(s) is nonincreasing, and since there is initially a finite
number of them, the number of balls is constant on some interval A =

[~i - a, On this interval, the balls B 1 (s ) , ... , are well defined,
have their centers fixed, their radius increases continuously with s, and
their degree = deg (u , is constant for s E A . Then we let

B; (s 1 ) = (s ) . This defines a family of disjoint balls that are
easily seen to verify properties (1), (2). For (3), note that deg (u , 
is either equal to if Bi (sl ) c S2 or to 0. In any case, (3) will
be verified.

The proposition is proved. This completes all the proofs.
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