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AB STRACT. - We study the existence of periodic solutions of singular
Hamiltonian systems as well as closed geodesics on non-compact
Riemannian manifolds via variational methods.
For Hamiltonian systems, we show the existence of a periodic solution

of prescribed-energy problem:

under the conditions: (i) V (q)  0 for all q E f 0}; (ii) V (q) ^-
-1/lqI2 as 0 and oo.

For closed geodesics, we show the existence of a non-constant closed
geodesic on (R x g) under the condition:

* Partially supported by the Sumitomo Foundation (Grant No. 960354) and Waseda
University Grant for Special Research Projects 97A-140, 98A-122.
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where ho is the standard metric on @ 2000 Éditions scientifiques et
médicales Elsevier SAS

AMS classification : 58F05, 34C25

RÉSUMÉ. - Nous étudions l’existence de solutions p’eriodiques pour
des systèmes Hamiltoniens singuliers, et de géodésiques fermées sur des
variétes Riemanniennes non-compactes par des méthodes variationnelles.
Pour les systèmes Hamiltoniens, nouns montrons l’existence d’une

solution périodique pour un probl’eme à énergie prescrite :

sous les conditions : (i) V (q )  0 pour tout q E { o} ; (ii) V (q ) ^-
quand |q| ~ 0 et oo .

Pour les géodésiques fermées, nouns montrons l’existence d’une

géodésique fermée non-constante sur (M x g) sous la condition :

où ho est la métrique standard sur @ 2000 Éditions scientifiques et
médicales Elsevier SAS

0. INTRODUCTION

In this paper we study the existence of periodic solutions of singular
Hamiltonian systems as well as the existence of closed geodesics on non-
compact Riemannian manifolds in a related situation.
As to periodic solutions of Hamiltonian systems, we consider the ex-

istence of periodic solutions of the so-called prescribed energy problem:

where q(t) :R ~ RNB {0} (N  2), {0} ~ M and H ~ R. We
consider the situation where V(q) has a singularity at 0;
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(V2) There exists an a > 0 such that

more precisely, for

The order a of the singularity 0 plays an important role for the
existence of periodic solutions. For example, for V (q ) = 
(HS.l)-(HS.2) has a periodic solution if and only if

The situation which generalizes the case (0. 1)-which is called strong
force is considered by [2,10,15,18] and the existence of a periodic so-
lution is obtained via minimax methods. The situation which generalizes
the case (0.3) which is called weak force is also studied by [2,12,13,
19,22,23]. We also refer to Ambrosetti and Coti Zelati [3] and references
therein. See also [4] for generalization for the first order Hamiltonian
systems. However, it seems that the situation related to the border case
a = 2 is not well studied; The only work, we know, is Ambrosetti and
Bessi [1]. They considered potentials V (q ) ^- - ( 1 / ~ q ~ 2 ) - and

proved the existence of multiple periodic solutions of (HS.1)-(HS.2) for
suitable range of H  0. See also [2,22,23] in which periodic solutions
are constructed for H  0 and V (q ) ~ - (E / ( q ( 2 ) - where £ > 0

is sufficiently small and a E (0,2). We remark that a perturbation of weak
force case is studied in these works and the case V (q ) _ -1 / ~ q ~ 2 , H = 0
is excluded.

In this paper we study a class of perturbations of -1 / ~ q ~ 2 and we look
for periodic solutions of (HS.1)-(HS.2) for H = 0. Our result does not
exclude the case V (q ) _ -1 / ( q ~ 2 , H = 0.

Since (HS.l)-(HS.2) with V (q ) - -1 / ~ q ( 2 has a periodic solution
if and only if H = 0, it seems that the situation is rather delicate
and the problem (HS.1)-(HS.2) accepts only very restricted class of
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perturbations. However, we have the following existence result which
ensures the existence for rather wide class of V(q)’s.

THEOREM 0.1. - Assume (VO)-(V2) with a = 2 and
(V3) Set W (q ) = V (q ) + ( 1 / ~ q ~ 2 ), then W (q ) satisfies

Then (HS .1 )-(HS .2) with H = 0 has at least one periodic solution.

The conditions (V2) and (V3) request

This condition is necessary for the existence of periodic solutions of
(HS .1 )-(HS .2) with H = 0 in the following sense; if

and a ~ b, then (HS.1)-(HS.2) with H = 0 does not have periodic
solutions in general. (Of course, if a = b > 0, the existence of periodic
solutions is ensured by Theorem 0.1.) More precisely, we have the
following

THEOREM 0.2. - Suppose cp(r) E C~([0, satisfies

and let

Then (HS.l)-(HS.2) with H = 0 does not have periodic solutions.

Since R x and RNB {0} are diffeomorphic through a mapping
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we can reduce (HS.l)-(HS.2) to the existence problem for closed

geodesics on non-compact Riemannian manifold ? x with a metric

g ~ defined by

Here g0 is the standard product metric on R x 

for (s, x) E R x and (~, 17) E x x Here
we identify

We will give ono-to-one correspondence between periodic solutions of
(HS.l)-(HS.2) and non-constant closed geodesics on x g v) in
Section 1 .

We study the existence of non-constant closed geodesics on x

g) in more general situation. Our main result for closed geodesics
is the following
THEOREM 0.3. - Let g be a Riemannian metric on II~ x and

suppose that g satisfies g ^- g° as s -~ More precisely,
(go) g is a C2-Riemannian fnetric on II~ x 
(g l ) g - g° as s in the following sense; let (~ 1, ... , ~ N-1 ) be a

local coordinate of in an open set U C and = s.

We write

We also write g° _ ~ go (~o, ~ l, ..., ~N-1) d~i ® where g°
is the standard product Riemannian metric on R x We
remark that g° (~ o, ~ 1, ... ~ ~ N-1 ~ is independent = s. We
assume

Then x g) has at least one non-constant closed geodesic.
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Remark 0.4. - We have a non-existence result for non-constant closed

geodesics on (R x g) which is related to Theorem 0.2. See
Section 1.2.
We remark that then the corresponding metric g v is

the standard product metric, that is, g v = gO. We can derive our Theorem
0.1 from Theorem 0.3.

Proof of Theorem 0.1. - Under the conditions (VO)-(V3), we can
see that (R x SN-1, g v ) is a Riemannian manifold and satisfies the

assumptions of Theorem 0.3. Thus (? x g v) has at least one closed
geodesic by Theorem 0.3. As we stated before, non-constant closed
geodesics on (R x are corresponding to periodic solutions of
(HS.1)-(HS.2). D

The existence of closed geodesics on compact Riemannian manifolds
is rather well studied (see for example [16] and references therein). For
non-compact manifolds, the existence of closed geodesics is studied

only in a few papers. Thorbergsson [25] obtains the existence of a
closed geodesic when M is complete, non-contractible and its sectional
curvature is non-negative outside some compact set. Benci and Giannoni
[11] also shows the existence of a closed geodesic for non-compact
complete Riemannian manifolds M with asymptotically non-positive
sectional curvature. We remark that our Theorem 0.3 ensures the
existence of a closed geodesic in a situation different from [25,11]. See
Section 1.2 below.

This paper is organized as follows: In Section 1, we study the relation
between periodic solutions of (HS.l)-(HS.2) and non-constant closed
geodesics on x where g~ is defined in (0.8). We also
give a proof to Theorem 0.2. Sections 2-5 are devoted to the proof of
Theorem 0.3. Here we use an idea form Bahri and Li [5] and our proof
uses the structure of closed geodesics on the standard sphere closed

geodesics on the standard sphere are great circles on 

1. PRELIMINARIES

In this section, we first study the relation between periodic solutions
of (HS.l)-(HS.2) and non-constant closed geodesics on R x with
a suitable metric g and we reduce our Theorem 0.1 to our Theorem 0.3.
Second, we give some reviews on the results due to Thorbergsson [25]
and Benci and Giannoni [11].
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1.1. Periodic solutions of (HS.1)-(HS.2) and closed geodesics on
(R x g)

In this section, we assume that V (q) E {0}, IIg) and H satisfies

We introduce a metric h v on {0} by

Suppose that uer) is a non-constant closed geodesic on {0}, h v),
that is, u(i) is a non-constant critical point of the energy functional:

acting on 1-periodic functions. Then u(T) satisfies for some constant
Eo > 0

B y ( 1. 3 ) and ( 1.4), we get

Now we define

and let T = T(t) be the inverse of t = t (T). Then q (t) = is

t(1)-periodic and satisfies (HS.1)-(HS.2). Conversely, if q(t) satisfies
(HS.1)-(HS.2), we remark that q (t) is not constant in t because of (1.1).
We can also see u (i ) = is a non-constant closed geodesic on

}0}, h v) after a suitable change of variable t = t (r) .
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Since IRN B {0{ ^_- R x we can reduce our problem to the existence
problem for closed geodesics on R x with a suitable metric.

Let g v be a metric on R x SN- l induced from hV by a mapping

That is,

where gO is the standard product metric on R x defined in (0.9).
Therefore there is a one-to-one correspondence between periodic

solutions of (HS.1)-(HS.2) and non-constant closed geodesics on x

SN-l, g v).
We also remark that x g v ) is complete under the condition:

Especially x SN-1 , g v) is complète if there exists a constant C > 0
such that

1.2. Variational characterization of closed geodesics on
(R x g) and non-existence result

From now on, we consider a complete Riemannian metric g on
R x Closed geodesics on x g) can be characterized as
critical points of the following functional:

where A is a space of 1-periodic curves on I~ x i.e.,

It is known that A is a C°° Hilbert manifold and its tangent space at
u (t) = (s (t), x (t)) E A is given by
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We will give a precise Hilbert structure to A later in Section 1.3.
Using this variational formulation, we can give a proof of Theorem 0.2.

Proof of Theorem 0.2. - The corresponding metric g ~ and functional
E(u) for V(~) == H = 0 are given by

We set = (s(t) + t, x(t)) and we see

Thus E’ (u ) ~ 0 for all non-constant curve u E A under the condi-

tion (0.4). a

Remark 1.1. - We have a similar non-existence result for closed

geodesics on x satisfies the condition (0.4)-
(0.6).

In [11,25], the existence of closed geodesics on non-compact mani-
folds is studied. In Section 2 of [25] and Section 2 of [11], they consider
the case of a "warped product" Riemannian manifold; let (Mo, ho) be a
compact Riemannian manifold and let M = II~ x Mo. We consider the
warped product metric on M :

Here ~8 : II~ ~ (0, oo) is a smooth positive function. They showed if
~8’{s) ~ 0 for all s E then (M, g) does not have non-constant closed
geodesics (see Proposition 2.2 in [11]). We can also modify their

arguments to prove our Theorem 0.2.
Their arguments and Remark 1.1 show that if a metric on R x Mo

satisfies
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and a ~ b, then (R x Mo, g) does not have non-constant closed geodesics
in general. Conversely, when (Mo, h o ) = the standard shere our

Theorem 0.3 ensures the existence of a non-constant closed geodesic
under the condition a = b in (1.7)-(1.8). It seems that for general
compact Riemannian manifolds (Mo, ho) the existence of non-constant
closed geodesics is not known under the condition a = b in (1.7)-(1.8).

Besides non-existence result for a "warped-product" Riemannian man-
ifolds, [11,25] study the existence of non-constant closed geodesics on
non-compact complete Riemannian manifolds. In [25], the existence of
non-constant closed geodesics is proved for non-compact complete man-
ifolds whose sectional curvature is non-negative outside some compact
sets. For N = 2, [25] also proves the existence for non-compact com-

plete surfaces which are neither homeomorphic to IR2 nor R x (See
also Bangert [8].) Benci and Giannoni [11] proves the existence for non-
compact complete Riemannian manifolds M with asymptotically non-
positive sectional curvature under a suitable condition on the topology of
the free loop space A (M) on M.

1.3. A Hilbert structure on A

For later use, we define the space A and fix a Hilbert structure on A

precisely.
We embed R x into in a standard way:

We also identify

We introduce the free loop space A on R x by

We equip A with a Riemannian structure
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for (03BE1, ~1), (03BE2, ~2) ~ T(s,x)A and (s, x) E ̂ . Here Dt~ is the covariant
derivative of r~ (t ) , i. e., denoting by P (x (t ) ) the projection from IRN onto

Dt ~ - P(x(t)) ~! (t). We also denote by distA (-, -) the distance
on A induced by the Riemannian We have

(i) For uo E A, distA (u~ , uo) ~ 0 if and only if

(ii) For (M~)~ (u~ )~°_1 is a Cauchy sequence in (11, distA (., -))
if and only if

(iii) ( 11, distA (., .)) is a complete metric space.
Similarly for = {x E = 1 }, we define

(11SN-1, ~~, ~~T~SN_1 ) has properties similar to the above (i)-(üi).
Finally in this section, we give a minimax characterization of closed

geodesics on with the standard metric. Closed geodesics on the
standard sphere can be characterized as critical points of

and they are great circles, that is,
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where k E Z and e 1, e2 E IRN are vectors such that ei . e j = 8ij. Their
critical values are

When N = 2, we set

Then it is clear that

and it corresponds to the prime closed geodesic YI (t).
When N > 3, we set

where

is defined by

and deg cr is its Brouwer degree.
We have

and it corresponds to the prime closed geodesic yl (t). In fact, it is well
known that the minimax value

gives a non-zero critical value of ESN-I (u). Thus c = 2~z 2k2 for some
kEN. On the other hand, we find for a suitable hSN-l I

Thus we have (1.15). An example of is
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Here we use notation

2. BREAK DOWN OF THE PALAIS-SMALE CONDITION AND
MINIMAX METHODS FOR E (u)

In what follows, we will give a proof of Theorem 0.3. We assume a
Riemannian metric g on R x satisfies (g0)-(gl) and we are going
to prove the existence of a critical point u E A of

First, we study break down of the Palais-Smale condition for E (u) .

PROPOSITION 2.1. - Suppose that (u~ )°°_1 C A satisfies for some

Then there is a subsequence-we still denote it by u j-such that one of
the following two statements holds:

(i) There is a non-constant closed geodesic uo E A on (II8 x g)
such that

equivalently,

(ii) There is a closed geodesic xo (t) E on the standard sphere
such that if we write = the,n
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We use the following property frequently in what follows:

DEFINITION. - For c E I~ we say that E(u) satisfies (P S)c in A if and
only if any sequence (u ~ ) ~°_ 1 C A satisfying (2.1 ) and (2.2) has a strongly
convergent subsequence.

Recalling ( 1.10) and ( 1.11 ), we have

COROLLARY 2.2. - (P S)c holds for E(u) for c E (0, oo) B {2~2k2; k E
l~}. Moreover non-convergent sequence (u~ )~°_1 = (s~ , C ~ satis-

fying (2.1 ) and (2.2) with c = 203C02k2 has a subsequence-still denoted by
u j-such that

( 1 ) s~ (0) -~ o0 or s~ (0) 
(2) - (Sj(t) - sj(0),xj(t)) ~ (0, yk (t)) in A as j ~ ~, where

yk (t) is given in ( 1.10).
(3) E (u j) -~ 2~c2k2.
(4) (N - 2) (2k - 1 ), where indexE"(uj)

denotes the Morse index of E"(u j ).
To prove Proposition 2.1, we first observe

LEMMA 2.3. - Under the assumption (gl), there are constants m l,
m 2 > 0 such that

for all

Proof of Proposition 2.1. - Assume that (u = (s~ , C A

satisfies (2.1 ) and (2.2). By Lemma 2.3, we see for some constant C > 0
independent of j

Thus we have

We may assume that E [-oo, oo] exists and consider two
cases:
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Case 1 : ("oo, oo).
In this case, (s~ , x j ) stays bounded as j -~ oo by (2.4), (2.5). Thus we

can show the statement (i) of Proposition 2.1 in a standard way.
Case 2: 

Setting = (s~ (t) - s~ (0), ~1, we get from (2.5) and (gl)

(1) û ~ stays bounded in A as j -~ oo,
(2) A)* ~ 0 as j ~ oo. Here g0 is the standard product

metric defined in (0.9) and is a functional corresponding to
closed geodesics on (R x 

Thus, we can extract a subsequence still we dénote it by uj2014such that
for some û o = (so , xo) E A

Clearly Uo is a critical point of EO(u), that is, û° is a closed geodesic on
(I~ x go). Thus we have

(1) 50(t) == p is a constant,
(2) is a closed geodesic on the standard sphere SN-1,
(3) Xj -~ x° in A and s~ (t) - -~ p in H 1 (o, 1; Since

s~ (o) = o, p must be 0.
Therefore we get the statement (ii). D

Proof of Corollary 2.2. - It suffices to show (4). Since =

(s~ (t) - x~ (t)) -~ (0, and E"(u~) ~ E°"(o, yk), it suffices
to show index E°" (0, yk) ) (N - 2) (2k - 1 ) . Let el, ..., eN E be an
orthonormal basis of RN and assume yk (t) = el cos 2nkt + e2 sin 2n kt.
Then we can easily see
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where V = span{el cos 203C0 jt, ei sin 2n jt ; i = 3, 4, ... , N, j = 0,1,...,
k - 1}. Thus index E°" (o, yk) > dim V = (N - 2) (2k - 1). a

Next we define two minimax values to find a critical point of E (u ) .
Our methods are inspired by the argument of Bahri and Li [5] in which
the existence of positive solutions of semilinear inhomogeneous elliptic
equations in IRN is studied. See also Bahri and Lions [7]. In what follows,
we mainly deal with the case N > 3. The case N = 2 will be studied in
Section 5.

To define our first minimax value, we need the following definitions:
for a (N - 2)-dimensional compact manifold M, we set

We consider the following class of compact manifolds:

We remark that SN-2 E MN-2 and 0 because of the existence

of given in (1.17). For M E ,~1~(N_~, we set

and

To define our second minimax value, we consider the following class of

mappings:

where is defined in (1.17). We remark yo(r, z) (t) = (r, 
rand h ~ 0. We define

Two values b and b play an important role to show the existence of critical

point of E (u ) . b and b have the following properties:
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PROPOSITION 2.4. -

To prove Proposition 2.4, we need

LEMMA 2.5. - Let M be a compact (N - 2)-dimensional manifold
such that

is not empty. Then

where E SN- (x) E R) is defined in (1.9).

Proof - First we show that

If not, for any ~ > 0 we can find a E (M) such that

Thus we have for x = a (z) , z E M

max

Therefore for ~ E (0, 2 )

for all r E [0, 1], x E a (M), t E [0, 1]. Thus

is well-defined. We remark that crl (z) (t) is independent of t and it can be
regarded as a map from M to Since dim M = N - 2, ai is not onto
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and crl (M) is contractible to a point in Thus cr (M) is contractible
in and this contradicts 03C3 ~ 0393SN-1 (M) . Therefore

Since the Palais-Smale condition holds for ESN-i (u) E R),
we can see that inf03C3~0393SN-1 (M) E$N-1 (x ) is a positive critical
value of ESN-1 (x). (For a similar argument, see the proof of Proposi-
tion 2.6 below.) Since critical points of ESN-i (x) correspond to closed
geodesics on the standard sphere we can see that the least positive
critical value is 2n 2 . Thus we get (2.12). a

Proof of Proposition 2.4. - (i) For M E MN-2 and y(z) _ (s(z),
x (z)) E r(M) we set y E by

We can easily see that E 0393SN-1 (M). Thus by Lemma 2.5

On the other hand, by (2.3) we have for u = (s, x) E A

Thus we have

Therefore

To show b  203C02, we recall SN-2 E MN-2 and we set =

(l, ao(z)(t)) for .~ E II~ and z E SN-2 . Then is not contractible
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in A and

Letting f ~ oo, we get by (gl) and (1.16)

Thus b  b(SN-2)  2n2. Thus (i) is proved. 
_

To prove (ii), we remark that for any y (r, z) E r there exists a R > 0
such that

Thus,

Therefore we obtain b > 2~c 2 . D

By the above Proposition 2.4, it occurs one of the following four cases:

In each case, we will show that E (u ) has a critical point. Actually b is a
critical value of E (u ) in cases A, D and b is a critical value in cases B, C.
The cases A, B are easy to deal with and we can see that b or b is a 

’

critical value of E (u) rather in a standard way.

PROPOSITION 2.6. -

(i) If b E (0, 2n 2), then b is a critical value of E (u).
(ii) {2~2k2; then b is a critical value of E(u).

To prove the above proposition, we need the following deformation
lemma.

LEMMA 2.7. - Assume that (PS)cholds at level c for E (u) E 
and c is not a critical value of E(u). Then for any ~ > 0 there exist

ca E (O, ~ ) and r~ ( t, u ) E C ( [O, 1] x 11,11 ) such that
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(1) 
(2) r~ (t, u) = u for all r E [0, 1] [c - ~, c + ~].
(3) M)) ~ E(u)for all ï e [0, 1] and u e A.
(4) 

Proof - See Appendix A of Rabinowitz [20]. D

Proof of Proposition 2.6. - (i) By the assumption b E (0, 2~t2), there
exists a sequence C M N-2 such that

First we show that is a critical value of E (u ) . If not, we choose
~ > 0 so that (b ( M~ ) - ~ , b ( M~ ) -~- ~ ) C (0, 2n2) and apply Lemma 2.7 to
obtain (o, ~ ) and u ) E C ( [o, 1 ] x l1,11 ) . We choose y E 
such that

We can easily see y(z)) belongs to r (M j ) and by (4) of
Lemma 2.7

This is a contradiction and b(Mj) is a critical value of E (u) . Since
(P S)c holds in (0, 2~c 2 ) and b = b(Mj) E (0, 2~t 2 ) i s an accu-

mulation point of critical values, b is also a critical value of E (u ) .
(ii) By the assumption b g {2n2k2; k E I‘~}, b > 2n2 and follow

from (ii) of Proposition 2.4 and Corollary 2.2. Thus we can prove (ii) in
a similar way to (i). D

Thus we can find at least one critical point in cases A, B. The following
two sections will be devoted to study cases C, D.

3. CASE C:

Here we suppose b = 203C02k20 (ko = 2, 3,...). We use the Morse indices
to deal with this case. We refer to Fang and Ghoussoub [ 14] for a related
argument.
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Since E(u) does not satisfy the Palais-Smale compactness condition,
we introduce a perturbed functional E" (u ) : ll -~ R ( v E [0, 1]) by

for u (t) = (s (t), x (t)) E A . This perturbation is introduced to obtain the
Palais-Smale condition ( P S)~ for all c > 0. The corresponding argument
for singular Hamiltonian systems is developed in [22].

First we have

PROPOSITION 3.1. - For v E (o, 1], the functional Ev(u) satisfies
(P S)c for all c > 0. That is, if C A satisfies

Then (u~ )~°_1 has a strongly convergent subsequence.
Proof. - By (2.3), we have

Thus under the condition (3.2) we can see uj = (sj,xj) is bounded in
L 2 (o, 1 ) and there exists a constant C > 0 such that

Remark that = 1 for all t. To obtain boundedness of u ~ = (s j , x j )
in ~1, we show that remains bounded as j -~ oo .

Arguing indirectly, we assume that sj(0) ~ oo. The case sj(0) --+ -00
can be treated similarly. By (3.5), mint~[0, 1] s j (t) ~ oo. Thus by (3.2) and
the definition of Ev(u), we have

We remark that (3.6) and (2.3) imply
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Thus

On the other hand, we have from (3.3) that 0) -~ 0, 1.e. ,

Remarking that (3.6) implies 0) 2014~ 0, we have

Combining (3.7) and (3.8), we get c = 0. But this contradicts the

assumption (3.2). Thus M y = (s j, x j) remains bounded as j ~ oo and
we can show the existence of a strongly convergent subsequence in a
standard way. D

Next we study an asymptotic behavior of critical points of

Ev (u) as v -~ 0.

PROPOSITION 3.2. - Suppose that for v E (0, 1 ] there exists a critical
point u" E A of Ev(u) such that for some c > 0

Then it occurs one of the following two cases:

(i) There exists a strongly convergent subsequence ( v J ~ 0) in
A.

(ii) There exist a subsequence u"; _ (s" J , and k ~ N such that

where yk (t) = el cos 2nkt + e2 sin 2nkt (k e~ = 
is a closed geodesic on the standard sphere.
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Proof. - Suppose that a sequence of critical points (uv)v>o satisfies
(3.9). As in the proof of Proposition 3.1, we can see that

Thus,

and we can see that (l.t v ) v E (0,1 ) has a strongly convergent subsequence if
remains bounded as v -~ 0.

We suppose that

The case 2014~ -oo can be treated in a similar way. By (3.11)-(3.13)
and (g 1 ), we have

Thus we have from Ev (u") = 0 that

Thus we see
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Therefore by (3.13)

Using (3.14) again, we get from (3.12), (3.16) that

We also have from (3.11 ), (3.12), (3.17)

Similarly we can see also from (3.11 ), (3.12), (3.17) that

By (3.15), (3.18), we can see that (uv) satisfies

Thus we can apply Proposition 2.1, Corollary 2.2 and we have (3.10) for
a suitable k e N. Now statements (3) and (4) follow from (3.15), (3.19)
and (3)-(4) of Corollary 2.2. D

Now we use the above Propositions 3.1 and 3.2 to deal with the case
C: b = 203C02k20 (ko = 2, 3, ...).
We choose Lo > 2 such that

and we set
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We have the following

LEMMA

Proof - For any y E ro, we set

Then we see j7 E F. By (3.20) and b = 2~ 2kô > 8n 2, we have

Thus we get bo.
Conversely, for any j7 E F we can find L > Lo such that

We set Yo E ro by

Then we have

and we obtain b0  b. D
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Next we set for v E (0,1]

Then we can easily see

By Proposition 3.1, we can see

PROPOSITION 3.4. - For any v E (0, 1], b" is a critical value of Ev(u)
and there exists a critical point u" E ~ such that

Proof. - Since bv  b  8n2 and (P S)c holds for Ev(u) at the level
c = bv , we can see that b" is a critical value of Ev(u). Thus there exists a
critical point uv E A such that (3.23) and (3.24) hold. We can get (3.25)
as in [21] (see also [6,9,17,24]). D

Proof of Theorem 0.3 in case C. - By Proposition 3.4, we can find a
sequence C A such that (3.21)-(3.22) and (3.23)-(3.25) hold.
Applying Proposition 3.2, we can extract a subsequence -~ 0)
such that either the statement (i) or (ii) of Proposition 3.2 occurs.

Suppose that (ii) occurs. Then by (ii)(3), (4), we have

Since ko > 2 and N > 3, this contradicts (3.25). Thus (i) takes a place
and u = u"~ satisfies E(u) = and E’(u) = 0. D

4. 

Here we suppose b = b = 203C02 and we show that 203C02 is a critical value
of E(u).

First we assume b = 2~c 2 and we find M E MN-2 and y E h (M) with
special properties.
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PROPOSITION 4.1. - Assume b = 2TC2. Then for any ~ > 0 there exist
M E MN-2 and 03B3 E such that

Proof - Since b = 2~2, for any s > 0 there exists a y E r such that

Approximating y by a C°°-mapping, we may assume that y E x

SN-2, A) n F. We write y (r, z) (t) = (s (r, .z) (t), x (r, z) (t)) and consider
a C °’° -mapping

By the Sard’s theorem, we can find ~8 E [o, 1 ] such that

By (4.3), is a (N - 2)-dimensional submanifold of R x 
Since f (r, z) = r for sufficiently large is compact and we
can write

where Mi, M2,..., Mn are (N - 2)-dimensional compact connected
submanifolds of R x SN-2. Later we show that

there exists a jo E {1.... n } such that Mjo E MN-2

and 03B3|Mj0 E r(Mjo). (4.4)

We set M = Mjo and y = Then we have (4.1 ) and (4.2). 0

To prove (4.4) we need

LEMMA 4.2. - For any y E mapping

is onto.
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Proof - We identify [0, 1 ] / { 0, 1 } ^- SI 1 and we compute the mapping
degree of

We can see easily that deg y = ~ 1 for large R. Thus [-7?, R] x SN-1 C
V([-/~ R] x SN-2 x [o, 1 ]) for all R > 0. Therefore y is onto. D

Proof of (4.4). - It suffices to show that y (M~ ) is not contractible in
A at least for one j E { 1, 2, ... , n } . Arguing indirectly, we suppose that
y (M j) is contractible in A for all j .
By (4.3) for some 8 > 0, there exist neighborhoods of M j and

diffeomorphisms

such that 0 (i ~ j ). We may assume that 
is also contractible in A. We write y (r, z) (t) = (s (r, z)(t), x (r, z) (t)) .
Then is contractible in Thus there exists a contraction:

such that

We define for

where a (r, z) E (-~, 5) is a unique number such that (r, z) = ~~ (a (r, z),
m ) for some m E M j .

For

We can see
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is well-defined and f1 E 7" for all r E [0, 1]. Moreover

Thus fl IR x SN-2 x [0, 1] ~ R x is not onto. This contradicts
Lemma 4.2 and at least one y (Mj) is not contractible in ~l. D

To obtain the existence of a critical point, we need the following
version of Ekeland’s principle.

LEMMA 4.3. -Let M E and suppose that y E I,(M) satisfies
for some £ > 0

Then there exists v E A such that

Proof - Arguing indirectly, we assume that

Choose a smooth function l~ -~ R such that

We consider the x 11 ~ A defined by

We can see that

(1) for each u E y (M) the solution u ) of (4.8)-(4.9) exists for
~ E [0, 2~],
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This contradicts the definition of b (M) . D

Proof of Theorem 0.3 in case D. - By Proposition 4.1, under the
assumption b = 2~c 2, for any c > 0 there exist a Me E MN-2 and
Ye E r(Me) satisfying

Since b = 2n2, we have

Applying Lemma 4.3, there exists u £ = Xe) E A such that

By (4.12), we find for some v = (s , je) E 

It follows from (4.11 ) that E [o, 1 ] . Thus,

Since (4.13) and (4.14) hold, we have

and we can apply Proposition 2.1. By (4.15), the statement (ii) of
Proposition 2.1 cannot take a place. Therefore there exists a strongly
convergent subsequence ~ 0) and the limit u o = limj~~u~j
is a critical point of E (u) with E (uo) = 2n 2 . D
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5. THE CASE N = 2

We give an outline of a proof in case of N = 2. We study the existence
of closed geodesics on (I~ x g). We use the winding number of u E A
in an essential way.
We denote the winding number of u : [o, 1 ] / { o, 1 { ^r S’ 1 -~ S’ 1 by

wind (u ) and set

where R x S’ --+ SI; (Y, z ) is the projection.
As to the break down of the Palais-Smale condition for the restricted

functional E (u ) : 111 ~ we have

PROPOSITION 5.1. - Suppose that C ~l l satisfies for some
c>0 

for some c > 0. Then there is a subsequence-still denoted by u j-such
that one of the following two statements holds:

(i) There is a non-constant closed geodesic uo E ~l~ 1 on x g)
such that

(ii) We write = Then we have

In particular, (PS)c holds in ^1 for c E (0, oo) B {2n2}.
Proof. - We remark that (cos 2nk(t - B), sin 2nk(t - ~11 for

k E Z B {1}. The proof can be given just as in Proposition 2.1. D

We define b and b as follows:

where
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Then we have

(i) 0  ~ 27~ ~ &#x26;.
(ii) If b  2n2, then b is a critical value of E (u) .
(iii) If b > 2n2, then b is a critical value of E (u ) .

Lastly we can also show that 2n2 is a critical value in case b = b = 2n2
as in Section 4. ( M _ ~ pt~ in this case.) We remark that the case C does
not need to study for N = 2. D
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