@article{AIHPC_2000__17_1_1_0, author = {Tanaka, Kazunaga}, title = {Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--33}, publisher = {Gauthier-Villars}, volume = {17}, number = {1}, year = {2000}, mrnumber = {1743429}, zbl = {0955.37040}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2000__17_1_1_0/} }
TY - JOUR AU - Tanaka, Kazunaga TI - Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 1 EP - 33 VL - 17 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_2000__17_1_1_0/ LA - en ID - AIHPC_2000__17_1_1_0 ER -
%0 Journal Article %A Tanaka, Kazunaga %T Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds %J Annales de l'I.H.P. Analyse non linéaire %D 2000 %P 1-33 %V 17 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_2000__17_1_1_0/ %G en %F AIHPC_2000__17_1_1_0
Tanaka, Kazunaga. Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds. Annales de l'I.H.P. Analyse non linéaire, Volume 17 (2000) no. 1, pp. 1-33. http://archive.numdam.org/item/AIHPC_2000__17_1_1_0/
[1] Multiple periodic trajectories in a relativistic gravitational field, in: H. Berestycki, J.-M. Coron and I. Ekeland (Eds.), Variational Methods, Birkhäuser, 1990, pp. 373-381. | MR | Zbl
and ,[2] Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rat. Mech. Anal. 112 (1990) 339-362. | MR | Zbl
and ,[3] Periodic Solutions of Singular Lagrangian Systems, Birkhäuser, Boston, 1993. | MR | Zbl
and ,[4] Periodic motions for conservative systems with singular potentials, NoDEA Nonlinear Differential Equations Appl. 1 (1994) 179- 202. | MR | Zbl
and ,[5] On a min-max procedure for the existence of a positive solution for certain scalar field equations in RN, Revista Mat. Iberoamericana 6 (1990) 1-15. | MR | Zbl
and ,[6] Morse index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math. 41 (1988) 1027-1037. | MR | Zbl
and ,[7] On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. Henri Poincaré, Analyse Non Linéaire 14 (1997) 365-413. | Numdam | MR | Zbl
and ,[8] Closed geodesics on complete surfaces, Math. Ann. 251 (1980) 83- 96. | MR | Zbl
,[9] Subharmonic solutions of prescribed minimal period for autonomous differential equations, in: Dell'Antonio and D'Onofrio (Eds.), Recent Advances in Hamiltonian Systems, World Scientific, Singapore, 1986. | MR | Zbl
and ,[10] Periodic solutions of prescribed energy for a class of Hamiltonian systems with singular potentials, J. Differential Equations 82 (1989) 60-70. | MR | Zbl
and ,[11] On the existence of closed geodesics on noncompact Riemannian manifolds, Duke Math. J. 68 (1992) 195-215. | MR | Zbl
and ,[12] Periodic solutions for a class of planar, singular dynamical systems, J. Math. Pure Appl. 68 (1989) 109-119. | MR | Zbl
,[13] Collisions and non-collisions solutions for a class of Keplerian-like dynamical systems, Ann. Mat. Pura Appl. 166 (4) (1994) 343-362. | MR | Zbl
and ,[14] Morse-type information on Palais-Smale sequences obtained by min-max principles, Comm. Pure Appl. Math. 47 (1994) 1595-1653. | MR | Zbl
and ,[15] Remarks on periodic solutions, with prescribed energy, for singular Hamiltonian systems, Comment. Math. Univ. Carolin. 28 (1987) 661-672. | MR | Zbl
,[16] Grundlehren der Math. Wiss. 230, Springer, Berlin, 1978. | MR | Zbl
, Lectures on Closed Geodesics,[17] Nontrivial solutions of operator equations and Morse indices of critical points of min-max type, Nonlinear Analysis: T.M.A. 12 (1988) 761-775. | MR | Zbl
and ,[18] Periodic solutions with prescribed energy for singular conservative systems involving strong force, Nonlinear Analysis: T.M.A. 21 (1993) 167-179. | MR | Zbl
,[19] Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Analysis: T.M.A. 22 (1994) 45- 62. | MR | Zbl
and ,[20] Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986. | MR | Zbl
,[21] Morse indices at critical points related to the symmetric mountain pass theorem and applications, Comm. Partial Differential Equations 14 (1989) 99-128. | MR | Zbl
,[22] A prescribed energy problem for a singular Hamiltonian system with a weak force, J. Funct. Anal. 113 (1993) 351-390. | MR | Zbl
,[23] A prescribed-energy problem for a conservative singular Hamiltonian system, Arch. Rational Mech. Anal. 128 (1994) 127-164. | MR | Zbl
,[24] Indice de Morse des points critiques obtenus par minimax, Ann. Inst. Henri Poincaré, Analyse non Linéaire 5 (1988) 221-225. | Numdam | MR | Zbl
,[25] Closed geodesics on non-compact Riemannian manifold, Math. Z. 159 (1978) 249-258. | MR | Zbl
,