@article{AIHPC_2000__17_2_193_0, author = {Hogan, Jeff and Li, Chun and McIntosh, Alan and Zhang, Kewei}, title = {Global higher integrability of jacobians on bounded domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {193--217}, publisher = {Gauthier-Villars}, volume = {17}, number = {2}, year = {2000}, mrnumber = {1753093}, zbl = {1008.42014}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2000__17_2_193_0/} }
TY - JOUR AU - Hogan, Jeff AU - Li, Chun AU - McIntosh, Alan AU - Zhang, Kewei TI - Global higher integrability of jacobians on bounded domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 193 EP - 217 VL - 17 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPC_2000__17_2_193_0/ LA - en ID - AIHPC_2000__17_2_193_0 ER -
%0 Journal Article %A Hogan, Jeff %A Li, Chun %A McIntosh, Alan %A Zhang, Kewei %T Global higher integrability of jacobians on bounded domains %J Annales de l'I.H.P. Analyse non linéaire %D 2000 %P 193-217 %V 17 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPC_2000__17_2_193_0/ %G en %F AIHPC_2000__17_2_193_0
Hogan, Jeff; Li, Chun; McIntosh, Alan; Zhang, Kewei. Global higher integrability of jacobians on bounded domains. Annales de l'I.H.P. Analyse non linéaire, Volume 17 (2000) no. 2, pp. 193-217. http://archive.numdam.org/item/AIHPC_2000__17_2_193_0/
[1] Sobolev Spaces, Academic Press, New York, 1975. | MR | Zbl
,[2] W1,p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984) 225-253. | MR | Zbl
, ,[3] Interpolation of Operators, Academic Press, Boston, 1988. | MR | Zbl
, ,[4] Integrability for the Jacobian of orientation-preserving mappings, J. Funct. Anal. 115 (2) (1993) 425-431. | MR | Zbl
, , ,[5] Hp Theory on a smooth domain in RN and elliptic boundary problems, J. Funct. Anal. 114 (1993) 286-347. | MR | Zbl
, , ,[6] Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993) 247-286. | MR | Zbl
, , , ,[7] Weak continuity and weak lower semicontinuity of nonlinear functionals, in: Lect. Notes Math., Vol. 922, Springer, Berlin, 1982. | MR | Zbl
,[8] On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Lineaire 7 (1990) 1-26. | Numdam | MR | Zbl
, ,[9] Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. [10] , , , Limits on the improved integrability of the volume forms, Indiana Univ. Math. J. 44 (1995) 305-339. [11] , Integrability theory of the Jacobians, Vorlesungsreihe Rheinische Friedrich-Wilhelms-Universität Bonn 36 (1995). | MR
, ,[12] On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992) 129-143. | MR | Zbl
, ,[13] On weak convergence in H1 (Rd), Proc. Amer. Math. Soc. 120 (1994) 137-138. | MR | Zbl
, ,[14] Espaces de traces ses espaces de Sobolev-Orlicz, J. de Math. Pures et Appl.53 (1974) 439-458. | MR | Zbl
,[15] The cotype of operators from C(K), Ph.D. Thesis, Cambridge, 1989.
,[16] Comparison of Orlicz-Lorentz spaces, Studia Math. 103 (1993) 161-189. | MR | Zbl
,[17] Higher integrability of determinants and weak convergence in L1, J. Reine Angew. Math. 412 (1990) 20-34. | MR | Zbl
,[18] Fractional integration in Orlicz spaces. I, Trans. Amer. Math. Soc. 115 (1965) 300-328. | MR | Zbl
,[19] On weak continuity and the Hodge decomposition, Trans. Amer. Math. Soc. 303 (1987) 609-618. | MR | Zbl
, , ,[20] A characterization of the weakly continuous polynomials in the method of compensated compactness, Trans. Amer. Math. Soc. 310 (1988) 405-417. | MR | Zbl
, ,[21] A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations 19 (1994) 277-319. | MR | Zbl
,[22] Note on the class L log L, Studia Math. 32 (1969) 305-310. | MR | Zbl
,[23] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. | MR | Zbl
,[24] the Jacobian determinant in Sobolev spaces, Ann. Inst. Henri Poincare (Analyse non lineaire) 11 (3) (1994) 275-296. | Numdam | MR | Zbl