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ABSTRACT. - We consider a large class of one-dimensional maps
arising from the contracting Lorenz attractors for three dimensional

flows: the eigenvalues ~,2  ~,1  0  ~,3 of the flow at the singularity
satisfy ~,1 + ~,3  0 (instead of ~,1 + ~.3 > 0 as in the classical geometric
Lorenz models). Such flows were studied by A. Rovella who showed
that non-uniform expansiveness is a persistent form of behavior (positive
Lebesgue measure sets of parameters). Using mainly expansiveness, we
prove the existence of absolutely continuous measures invariant under
these maps, and from this fact we are able to construct Sinai-Ruelle-
Bowen measures for the original flows that generate them. © 2000
Editions scientifiques et médicales Elsevier SAS

RESUME. - Nous considerons une classe importante de transformations
uni-dimensionelles provenant d’ attracteurs de Lorenz contractants des
flots en dimension 3 : les valeurs propres ~.2  ~,1  0  ~,3 du flot au
point singulier satisfont ~,1 + ~,3  0 (au lieu de ~,1 + ~,3 > 0, comme
dans les modeles geometriques de Lorenz standards). Ces flots ont ete
etudies par A. Rovella qui a montre que 1’ expansion non-uniforme a un
comportament persistant (ensembles de parametres de mesure positive).
En utilisant cette expansion non-uniform, nous demonstrons 1’ existence

1 E-mail: metzger@uni.edu.pe.
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de mesures invariantes par ces transformations qui sont absolutement
continues. De ce fait, nous deduisons 1’ existence de mesures SRB pour le
flots qui les induisent. © 2000 Editions scientifiques et médicales Elsevier
SAS

1. INTRODUCTION

Sinai-Ruelle-Bowen measures, SRB or physical measures, are those
measures for what the Birkhoff averages converge to a constant for a

large Lebesgue set. More precisely: if f : M ~ M is a transformation on
a manifold M, we call an f -invariant measure p an SRB measure if there
exists a positive Lebesgue measure set of points x E M such that

and the set is called (ergodic) basin of attraction of ~~.
For a flow ft : M -~ M the definition is

Lorenz flows are related to the system studied in [8], as a truncation of
a Navier-Stokes equation. Guckenheimer and Williams [3] introduced
a geometric model called expanding Lorenz attractor, in which they
suppose that the eingenvalues ~,2  ~,1 i  0  ~,3 at the singularity of the
flow satisfy the expanding condition ~,1 + ~,3 > 0. In [ 11 ], the expanding
conditions is replaced by the contracting one ~,1 + ~.3  0. The general
assumptions used to construct the geometric models, also permit the
reduction of the 3-dimensional problem, first to a 2-dimensional Poincare
section and then to a one-dimensional map. These maps are also called

Lorenz-like.

We will prove the existence of a unique and ergodic absolutely
continuous invariant measure (a.c.i.m.) for certain one-dimensional

Lorenz-like maps (Theorem A). After this, we will relate these results to
the case of flows and construct an SRB measure in this case too. Since the

a.c.i.m. found for the one-dimensional case is unique, the SRB measure
constructed for the flow is also unique.
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We will use four properties of the one-dimensional Lorenz-like maps
studied by [11]. More precisely. Let I C [-1, 1 ] be a compact interval
and f : I ~ I be a map such that f (I ) C I with a discontinuity at the
origin. Set cf = fk (x) for k > 0. So, we will require f to satisfy
conditions (AO)-(A3) below.

(AO) Outside the origen f is of class C3 and with negative Schwarzian
derivative, and also satisfies

for some constants K 2 and s with s > 1.
(Al) > ~,~ , for some ~.~ > 1, and for n > 1.
(A2) > e-an some a small enough, and all n > 1.
(A3) For any interval J C I there exists a number n (J) > 0 such that

I* C f n (J) ( f is topologically mixing on I* = cl ]).
Rovella in [11] showed the existence of a one parameter family of maps

which exhibit conditions (AO)-(A2) in a set of parameters of positive
Lebesgue measure. For a slightly smaller class of maps it is also true that
conditions (Al) and (A2) implies condition (A3). This fact is proved in
Lemma A. We work here with such a continuous family of maps, but the
arguments, and then the conclusions, remains valid for a larger class of
maps with negative Schwarzian derivative and with a finite number of
non degenerate critical points.

It is clear from our definitions that if ~c is an absolutely continuous
invariant measure for f and ergodic then it is an SRB measure. Now, we
can state our main theorem.

THEOREM 1.1 (Theorem A). - Under conditions (AO)-(A3), f ad-
mits an absolutely continuous invariant probability measure. This mea-
sure is unique and ergodic.

The basic strategy is to reduce the non-uniform hyperbolicity of the
dynamics of our maps to that of piecewise uniformly expanding maps.
That is what conditions (A1)-(A2) are for, which express a kind of
expansiveness. Condition (A3) is used principally for the uniqueness.
The techniques used here resemble that of Viana [14]. Frequently, we
will refer to this work for proofs that do not need major modifications.
The main difference in our aproach comes from the fact that our map

is not continuous and also has two critical orbits. We overcome the prob-
lem defining the tower to keep track of both orbits, resulting in a tower
extension with two blocks. It is also possible to work with maps that
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have more discontinuities or singularities if they have properties similar
to (AO)-(A3).
SRB measures were first proved to exist for Anosov systems [13] and

then for general uniformly hyperbolic diffeomorphisms [12] and flows
[1]. For these systems there are finitely many SRB measures ~c 1, ... , 
and their basin of attractions cover Lebesgue almost all the phase space
M. Moreover, they are stochastically stable (see Kifer [5,6]). The same
is true for the expanding Lorenz attractor as proved in Chapter 4 of [6].
We shall show that the contracting Lorenz atrractor is also stochastically
stable in a forthcoming work. Here is to be pointed aut that J. Palis

conjectured that every dynamical system can be approximated by another
having only finitely many attractors, supporting physical measures that
describe the time average of Lebesgue almost all points, and that the
statistical properties of this measures are stable under small random
perturbations, see [9,15]. In that sense our present and next works can
be seen as a contribution to, or at least as an example of, Palis conjecture.
Theorem A is proved in Sections 2 through 5. In Section 6 we will

establish some results on decay of correlations. This is made to complete
the description of the dynamics of the one dimensional map f. In the last
section, we will conclude relating this result to the contracting Lorenz
attractor.

2. SETTINGS

For our constructions and proofs we need several constants, let us fix
them here. First, suppose that the constant a in (A2) has been taken
small enough so that  ~~/S. In order to construct the tower
extension, we fix ~8 G ( (s + sal(s - 1)), and £ > 1. Up to here
these constants are enough for the definitions, but we will need other
constants to establish the expanding behavior of our tower extension. Let
p > e" such that > Àp, and also let 1  oro and 0  ~  ~o ~
where ao E ( 1, ~,) and 80 is much less than a. These constants are given
by Lemma 3.1 later on this section.

Our next step is the definition of the tower extension (cf. [14]). The
main feature of the tower is that it transforms our map f, which is not
uniformly expansive, to a map / that is uniformly expansive. For this,
set Bo = I and Bt = [ck - e-f3k, ct + for each k > 1. We let

Ek = Bk x (k } and set I = Ek ) U Ek ) U Eo. Note that the
critical point 0 is not contained in j5~ for 1, since (A2) implies
> > 
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We want to define f : I -~ I to be a tower extension in the sense of
[14]. But, since our initial map has a discontinuity, we should establish
that a point (x, 0) which is ready to ’climb a level’ should go up to level
E 1 if x > 0, and to level E 1 if x  0.
The precise expression for f’ (x, k) is the following:

Typically, a point (x, 0) moves around in the ground level Eo for a
while until it hits (0, 03B4) x { o } or (-03B4, 0) x { o } at some time m  0. Then
it starts climbing the tower in the following way

where E E~ if f m (x )  0 and E Ej if
fm(x) > o.

Unless f m (x) coincides with the critical point 0, the integer n is finite
and in the next iterate the orbit falls back to the ground level, that is,

(x, 0) = (x) ~ 0). Observe that we must have n > H ~
for some integer H (~ ) > 1 which can be made arbitrarily large by
choosing 8 small enough.
Now we define the cocycle First, we set wo(x, 0) = 1 for every

x E Bo. Given any point (x, k) E Ek , k > 1, there are two possibilities:
(1) There exists z with [  ~ such that /~(z, 0) = (x, k), in which

case we define

It’s easy to see that if z exist then it is unique, and has the additional
property that z  0 if (x, k) E E: and z > 0 if (x, k) E Ek .

(2) There is no such z, in which case we simply set k) = 0.
For each k > 1 we shall denote Wk = {x E wo(x, k) > 0} and

Wo = {x E Bo : 0) > 0} (i.e., Wo = Bo).
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Note that every We is an interval whose closure contains We also

write

Now, we associate to 03C90 the Borel measure mo = 03C90m where m is

the Lebesgue measure on /. Moreover if we denote ( . ~ the metric

in 1 induced by the standard metric in I, we can associate to c~o the
Riemannian metric [[ . II (x,k) = wo(x, k) I 

It results from the definition that c~o and mo are both supported on the
subset W. Reflecting the fact that points in IBW are transient for /, and
play no role as far as asymptotic behavior is concerned. Let us note that
certain points in the ground level are also transient, specifically, /(W)
does not intersect { ( f ( - b ) , U (ct, f ( ~ ) ) } x { 0 } . In order to see this,
if there exist (x, k) E W such that

then f (x) E ( f (-S), cl) U (cl , f (~)), and in that case we must have
x E (-03B4, 03B4) if 03B4 > 0 is small enough so that c2  f(-03B4)  cl and cl 
f(8)  In order to have /(x, k) E Eo we must have k + 1 > /7(~).
Assume that

so that

then, since x E Bk n ( - ~ , ~ ) , the interval Bk must be contained in

(-(16K1)-l~~s-1~, (16K1)-l~~S-1>)~{0~, and we have

so 1 / 16 for every y E Bk .
On the other hand, from the fact that e~    2 we have

which means that f (x, k) E contradicting the choice of (x, k).
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Now, for any point (y, l) such that /(y, l) E W, we set

Clearly, g ( y, l ) > 0 with this definition. Moreover, when (y, l ) E W,
1 /g ( y, l ) is the Jacobian of / at (y, l), with respect to the metric [[ . [ (or
equivalently, with respect to the measure mo).
Now, given a measurable function :1 -~ M we define

Now we define the B V-norm of ~p as

and  BY = {~p : I ~ II~:  With this definition, it is clear
that B V is a Banach space.

Finally, we describe the transfer operator Lo associated to /. Given
cp E B V and (x, k) E W, we set

Observe that for k = 0 there may be infinitely many terms. Then we
extend to /BW by asking that it be constant on each connected
component of for each k > 1.
More precisely, let ak  bk be the endpoints of the interval then

we define

This definition is made so that and sup ( are not affected
if we restrict ourselves to W. The variation of over Et- coincides
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with the variation of over wt and a similar fact is true for the
supremum of Of course the same holds for ~ £003C6 dmo because mo
is supported on W. In particular, the duality relation

whenever the integrals make sense, is not affected by this convention.
Clearly, LO is a nonnegative operator, in the sense that it maps

nonnegative functions to nonnegative functions. So, relation (1) also

implies that LO is not increasing with respect to the that is

3. EXPANSION LEMMAS

In this section we state two key lemmas on the expanding behavior of
certain iterates of the map f. They are formulate in the same form as
[14], because they are also true for the maps we are considering here.

LEMMA 3.1 (Vi 5.2). - There are constants ao > 1, b > 0 and ~o > 0
such that for any 0  ~  ~o there is c (~ ) > 0 such that, given any x E I

(1) i.f x~ .f (x)~ ... , (-~~ ~) then ( f n)’(x) > 
(2) if in addition, f n (x) E (-~, ~) then ( f n)’(x) > 

Proof - It was proved in other form by A. Rovella in [11], see Lemma
1, 1.1, 1.2 and their proofs, in the mentioned article. D

Now, we take the constant 8 in the definition of the tower, satisfying
0  ~  ~o, and fix a E (l, ~o], and we have

LEMMA 3.2 (Vi 5.3). - There is a constant C > 0 such that for any

(i) if (z) - for every 1 then

(ii) if in addition, (z) - then
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where M = K2.
And similar results hold ifz E (0, ~) (z) - c~ ~  

Proof - Let us proof part (i). First of all note that

so we only have to get a uniform bound for

Now, f has negative Schwarzian derivative in Bj since 0 fj B~ _
[c~ - cj + and as long as f ~ (z) E B J we have that

Then from condition (AO) we obtain:

. The right side is bounded provided that ~B > a (remember we have
chosen (s/(s - l))of > ~8 > ((s + 1 )/s)a, so ~B > a). This proves part (i).
Now, to prove part (ii), first observe that the first claim in (ii) is a direct

consequence of part (i) and (Al). The second one can be obtained as
follows. Let z and k be as in the statement, then

We can estimate the value of Izl from the inequality
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!

for some § E ( f ( z ) , from the Mean Value Theorem. For this § there
exists y satisfying the conditions in part (i) and such that f (y) _ ~ . The
last inequality is due to (AO). So the inequality above is a consequence of
the Mean Value Theorem and part (i).

Rewriting the equation, it stands that:

Combining this last inequality with (2) we obtain

Since ,8  (s/(s - l))a and ~,~~5 ~ e-a > ~,p we have

leading to

where M = K2.
This end the proof of Lemma 3.2. D

We denote by the partition of I into monotonicity intervals of 
for n > 1, and characterized in the following way: For every k > 1, set

Let be the two connected components of that is,

points in Uk are sent by f to an upper level of the tower, whereas points
in U are mapped down to the ground level Eo. For k = 0 we
set

Then we set
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Now, for any n > 1, we set to be the n th iterate by / of ~ ~ 1 ~ , that
is,

for each 0  i  n.
From now on, we will always assume that every ~ E has positive

length. Moreover, the intersection of ~ with W is either empty or an
interval with positive length. Note that in order to have this it suffices

that the /-orbits of points

be two-by-two disjoint injective sequences on 7B which can always be
obtained by slightly modifying ~6 and a if necessary (so as to avoid a
countable set of relations involving these two constants).

It follows from our definitions that if (jc,~) e t/~ n W, ~ ~ 1, and
z e (-~, ~)B{0} such that /~(z, 0) = (x , ~), then

The same is true if (x, 0) E (-~, ~) = Uo U Uo .
On the other hand, if (x, k) is in Dk n W , k > 1, and z as before ( Dk

here means some of the or then

The last inequality is consequence of Lemma 3.2.
Observe that k > H(8), where H(8) is the minimum height from

which orbits in (-~, S) x {o} can fall down to Eo (see Section 5.3 in [14~).
We suppose that 8 is small, so H(8) is large and implies (C/M) p-k 
1 /~,  1. Therefore, g (x, k)   1 in all the situations above, which

express the uniformly expanding character of /, because 1 /g acts as the
Jacobian of / respect to m o .
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We shall also need the iterated version gn of g, which is defined by

for every £ = (x, k) such that /~ (~) E W for 1 ~ i  n.
The following three lemmas will be stated without proofs because they

are similar to the corresponding lemmas in [ 14] .

LEMMA 3.3 (Vi 5.4). -
(1) Let y E be such that f’ (y ) C Eo for every n. Then

Moreover, var03B3g(n)  2 supy 
(2) Let y C r~ C W for some r~ E and let 0 C l  min{k, n - 1 }

be such that ,f’(y) C for 0  i  l and f (y) C E0 for l  i  n.

Then

Moreover, 2 sup03B3 g(n).
(3) Let y C r~ n W for some r~ E and let 1 > 0 such that f l (y) E

El+i for 0 ~ i  n then _ ~,-n on y.

LEMMA 3.4 (Vi 5.5). - There is C > 0 and, for each n > 1, there is
C (n) > 0 such that for every ~p E B V and every interval A CEo,

LEMMA 3.5 (Vi 5.6). - Given any or E (1, a ) there .is C > 0 such that:

for any function cp E BV and for all n ~ 1 .
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4. THE MIXING PROPERTY

We establish (A3) in order to make clear that a mixing property
is needed to show uniqueness of the measure and stochastic stability.
However, in our present setting, this can be chosen to be a consequence
of (Al) and (A2) as explained below.

In [11] it is proved that a one-parameter family of maps 
satisfying condition (AO) among others, has a positive Lebesgue measure
subset E C [0, 2) such that for all a E E, fa satisfies (Al) and (A2) with
0 G E as a point of density. This subset can be chosen to satisfy (A3), i.e.,
the following is true.

LEMMA 4.1 (Lemma A). - In a small enough neighborhood of the
density point, iffsatisfies (A 1 ) and (A2) then it satisfies (A3).

This makes our construction more relevant since it shows that that
conditions (A1)-(A3) are satisfied for a large set of functions, say, for
maps in a positive Lebesgue measure set in a one parameter family of
maps.
Lemma A seems Lemma 2.1 in [ 16] so we need properties similar to

PI and P2 of [16]. Property PI is the same as Lemma 3.1 and Property
P2 is the contain of Lemma 4.2. To show P2 we need some previous
definition that will be use only for the proof of Lemma A.

Let Im = em) for m > 0, let Im = - I_m for m  0, and

DEFINITION. - Let p(m) be the largest integer p such that

and

for j = 1, ..., p and x E Im . ’
The time interval 1, ..., p (m ) is called the bound period for Im .
LEMMA 4.2. - For each ~m ~ > Op(m) has the following properties.
(a) There is a constant C1 (a, ,8) such that: ,

(i)
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where K = (~ + + s)/(,B + log 4).

where p = p (m ) and for x E Im .

Proof - Suppose y E [cl , (for y E the

proof is similar).
The proofs of parts (a) and (c) are easy consequence of Lemma 3.1. So

we only have to prove (b).
For x E Im we have, assuming m > 0 to fix ideas,

for some y E f (x)] C [-1, so,

So we have the following bound for p,
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that is,

If m is large enough we can write,

For the other inequality, from the definition of p, there must exists a
z E Im such that

Supposing that f’ C 4, we obtain,

so

which implies that

Proof of Lemma A. - In [ 16], it was used the fact that the fixed point of
the map f in I has dense pre-images. We do not have this fixed point for
f but we have one for f 2 (i.e., we have two periodic points of period
two). Now, observe that our family of maps can be chose so that we
have this fixed point for f z with dense preimages, as required in the
arguments of [16]. This is due to the fact that the family (and also the
positive Lebesgue measure set satisfying (Al) and (A2)) has as a point of
density a map which is conjugated to the transformation x ~ 2x modZ.
So the conclusion remains valid. D

5. ABSOLUTELY CONTINUOUS INVARIANT MEASURES

Before going into the proofs of our main results, we need the following
lemma
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LEMMA 5.1 (Vi 5.7). - The measure mo = 03C90m is a finite measure
on I.

Proof - It is clear that mo (Eo) = m (Eo) = m (I ) is finite. Moreover,
for each k > 1

where z E ( - ~ , ~ ) is uniquely defined by 0) = (x, k ) . We change
variables z = fk(x), and we get

where Yk = {z E (-8,0): f k(z) E and Yk = {z E (o, ~): f k(z) E
Wk } .

Next, we observe that

where the third inequality is a consequence of (AO) and (Al). Replacing
above, and recalling that we have chosen > ea Àp we obtain that

for every ~ ~ 1. Since we chose p > 1 the claim follows immedi-

ately. D

THEOREM 5.1.- The maps / and f have absolutely continuous
invariant measures /lo and ~o respectively.

Proof - The proof of this theorem is contained in [14]. D

The arguments in [14] assure that ~o has a unique fixed point ~o in
BV. This function is the density of /lo with respect to mo. We only
make a remark on the fact that we are using the arguments that prove
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the existence of the measures. We are left to prove that ~co is unique in
the space of f -invariant probability measures absolutely continuous with
respect to Lebesgue. To prove this, we first observe that the measure ~co
has positive Lyapunov exponents for a.e. x in l.

THEOREM 5.2. - The measure po is ergodic and it is the unique
f invariant probability measure absolutely continuous with respect to
Lebesgue.

Proof - Since 0 has positive Lyapunov exponents a.e. and satisfies
(A3), we can use a theorem due to Ledrappier [7] in the form of part (3)
of Proposition 3.3 in [ 16] to assert that po is measure theoretically mixing
and so it is ergodic.
We claim that ~co is equivalent to the Lebesgue measure m on

I* = [cl , cl ]. This can be seen as follows; since ~o has Bounded

Variation, and ~03C60 dm0 = 1, there is some interval y G W, such that
> 0 so the density of ~co with respect to the usual length is

bounded away from zero on y, as a consequence, d 0/dm > 0.
On the other hand, (A3) ensures that = I* for some N > 1.
Therefore

which implies our claim.
Now, let v be any f -invariant probability measure which is absolutely

continuous with respect to Lebesgue measure. It is easy to see that the
support of v must be contained in I*, and so v « is equivalent to
m on I* ). It follows that v = ~co because ergodic measures are minimal
for the absolute continuity relation. That proves uniqueness.
Now, joining Theorem 5.1 and 5.2, Theorem A is proved. D

Finishing this section we prove a property of the support of the function
Set

LEMMA 5.2 (Vi 5.9). - The density ~po satisfies
(1) > 0;
(2) inf(03C60|W±k) > 0, for every k > l.

Proof - Let yl C W be an interval such that > 0. By
the topological mixing assumption (A3), there exists 0 such that
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= I* - cl ]. In particular, (yl))
contains the fixed points of f 2, namely pi 1 and p2 with pi 1 > p2 .
Moreover, up to slightly modifying ~8 if necessary, we may suppose that
no endpoint of levels Et, for k > 1 projects down to pi, nor p2. Then
there exists an open interval y2 C such that contains pl .

Clearly must contain pi for every n > 0. Now, suppose that

ct for every k > 1 and for i = 1, 2. If this is not true, we simply
replace = 1, 2} by another periodic orbit not intersecting ( - ~ , ~ ) ,
and the argument proceeds along the same lines. Now we have that,
there exists some finite time n2 > 0 such that f Zn2 (~ ) = (pi, 0), where
~ E Y2 satisfies ~c (~ ) = pi. Up to another arbitrarily small modification
of fJ, we may suppose that the orbit of £ does not pass trough any
of the boundary points of the monotonicity intervals in ~~1~ . Therefore
f 2~2 (~ (Y2)) contains some open neighborhood y3 of (pl , 0) in Eo. Let
n 3 > 0 be the minimum time such that f 2n3 (~z (Y3 ) ) intersects ( - 8 , ~ ) .
Hence

Set al = f([8, pl ] x f ~~) _ [.f (~) ~ p2] x so c~l c where

n = n 1 --~ 2n 2 ~- 2n 3 .
Now, with similar arguments we can set a2 = f ([p2, -8] x f 0~) _

[ pl , f (-~)] x with the property that o-2 C with m =

n + 2m 2 + 2m 3 , for some m 2 and m 3 . Set also a3 = ( p2 , p 1 ) and note
that f(al U a2) contains a3.
Now, since ~po is a fixed point for the transfer operator associated

to f , we have that > 0 implies that > 0, thus
> 0 for i = 1, 2, 3, and part (1) follows immediately.

Moreover, given ( y , k ) E 1, and z E ( - ~ , S ) such that

which proves part (2).
This last relation also yields another useful conclusion, namely
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and so

leading to

Note that Lemma 5.2 implies that Ws C supp 03C60 and from this

supp 03C60 = Ws, since 03C60 = £n03C60 implies that 03C60 is identically zero on
IBfn(I) for every n > 1 and discussion on p. 6 implies that U~ ~ fn(I) c
Ws . D

6. DECAY OF CORRELATIONS

In this section we prove that the measures ~co and that we have

just constructed, are exact, and so, also mixing, for the corresponding
dynamical systems j and f, respectively, in the same lines as stated in
Proposition 5.13 of [14]. As a consequence, the transfer operator Lo is
quasi-compact and both systems (/, and ( f, have exponential
decay of correlations in corresponding spaces of functions with bounded
variation. This proposition also provides another proof of the ergodicity
of po (besides implying that ~co is also ergodic). We are not going to
prove the equivalent of Proposition 5.13 of [14], because it follows the
same arguments, provided that we prove some previous lemmas. Before
proving these lemmas, let us make some conventions that will be used
throughout this section. Set

and also denote by ak the set of boundary points of the elements of the
partition More precisely
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and for each k > 1

Therefore ak can be expressed as follows

Observe that each 1, contains at most eight points.
Now, for n  1, N  1 and ~ e let be the sequence

given by

/’ (~) c for each I ~ 0.

Let r > 0 be fixed and define Q(n, N) to be the subset of intervals
such that:

(i) !~’)! ~ N + (n - for 0 ~’ ~. 
’

(ii) /~ (9~) is disjoint from for every 0 ~ ~ n .

LEMMA 6.1 (Vi 5.10). - Given ~ > 0 there exists N  0, such that for
1 the set Q(n, N) satisfies the following properties:

(1) for every ~ ~ Q(n, N), we have fn(~) ~ G Ek;
(2) the 0-measure of the union of the intervals ~ ~ Q(n, N) is at

most ~.

Proof - The statement of this lemma is not exactly the same as Lemma
5.10 of [14], but it is equivalent. The proof comes along the same
arguments. D

LEMMA 6.2 (Vi 5.11). - 1 and s2 > 0 there exists ~1 > 0

for I, any interval ~ e Q(n , N), and any borel c ~,

Proof - Most of the proof is based on the same ideas as Lemmas 3.1
and 3.2. The main new ingredient is to use condition (i) +

(n - i)T in the definition of Q(n, N), taking T small enough, e.g.,

t  log ~,p/log 8.
Suppose that ~ C Eo and C Eo. In this case we prove that jn

has uniformly bounded distortion on ~ (depending on N, but not on n
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or yy). Let us consider the sequence of iterates 0 ~ ~i  ~i + /7i  ~2 
...  ~ defined by

(a) G Eo for 0  j  b’1, for 03BDi + pi  7  03BDi+1 and 1 i 
r - 1, and for 03BDr + pr  j  n.

(b) G if /~) G (-~0) and G if

03BDi (~) G (0, 03B4), for 03BDi  j  03BDi + and 1  i  r,
Let y = G I and x , y G I .

We first consider 0 ~ ~  Suppose x  y, since f has negative
Schwarzian derivative in y and from condition (AO), we have

where xj = fj(x), and yj = fj(y).
But (-~, ~) gives  1 /8 and

for some z E f ~ (Y ), which implies bcro 1 ~ I f ~ (Y ) ~ ] using
Lemma 3.1, and leads to

Similar arguments show

Thus



268 R.J. METZGER / Ann. Inst. Henri Poincare 17 (2000) 247-276

And for the same reasons we have

for every 1 ~ i  r - 1, and also

Now, let j = vi and denote Ai = (y), 0). Thus,

Next, we consider 03BDi  j  03BDi + pi . We are assuming that C
(-~, 0), therefore, in this case we have

Let us see that the terms in the the sum are bounded by ( y ) / 0 i . In
fact, we have

for some z E y, more precisely z E [x, y], as a consequence of the Mean
Value Theorem. Now, the Chain Rule and condition (AO) imply

On the other hand, for this z we have

Thus we can write
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Now, since vi  j  v~ + pi , and z E [x, y] C y

Therefore

since E °

That is

since f3 > a.
Interchanging the roles of x and y in the above arguments, we have

Thus, joining all the parts, we obtain

of course f n ( y )  const, thus

for each 1 ~ i ~ r - 1, and from Lemmas 3.1 and 3.2.2.

Now, since fpi(f03BDi ( y ) ) C D p - we have

which implies (assuming that f’  4)
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This last relation leads to

Now, condition (i) in the definition of Q(n, N) implies pi = 
N + (n - vi - N + (n - Vi) and since we have chosen i =
log 03BB03C1/log 8 and e03B2  03BB1/s c  2, we obtain

Replacing in (9) we conclude that fn has bounded distortion on y

In equivalent terms, has bounded distortion on ~ as we had claimed.
In particular, in this case we may take ~l = (~2/m (I )) exp(-Kl ), where
1~1 > 0 denotes the right hand term in (10).
Now, the remaining cases can be treated easily. If ~ .is not contained

in Eo then we define (po + 1 ) > 1 to be the first iterate for which
Then, we modify the first condition in (a) to C Eo

for po + 1  j  Therefore, the sum

can be estimated in just the same way as (6).
For the sum over 0  j  po it is used a simpler version of (8), since

C if k (o) > 0, and if k(O)  0, and for k (o) = 0
we have to choose between E J or E - J depending upon is to the
left or to the right side of the critical point. From this,
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Thus, this last sum just adds a constant term to (9), and so does not
affect the conclusion (10): has bounded distortion on ~ also in this

case.

Finally, suppose that f n ( r~ ) is not contained in Eo. Then let v = vr
be the last iterate for which f " (r~) C Eo, and we do not define pr . The
previous cases show us that /~ has bounded distortion see (10)

From this point on, we can follow the arguments in [ 14] to conclude
the proof of the lemma. D

Let B the Borel a -algebra of I and Z3 the Borel a -algebra of I. By
definition, the invariant measure is exact for f if

Analogously, we say that 0 is exact for / if

LEMMA 6.3 (Lemma 5.12). -
(1) If A c I belongs to B then C I belongs to 
(2) For any A C I in there are Aj 1 C A2 C I so that C

A C and A2BAl is a countable set.

Proof - The first part is easy. In fact if A = f-n(An) for some Borel
subset An C I then x if and only E A if and only
if = E An if and only if E which is

equivalent to x E 
That is (A) = (An)).
To proof part (2), let A2 = and
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It is clear that A C (A2 ) , so let us prove that (Ai) C A .
Given any z ~ A1 there is some $ E A such that 03C0(03BE) = z. Thus we

only have to show that any other 1] E I such that = z also belongs
in A . Now, the elements of are characterized by the property

Therefore, we are left to show that for any § and 1] as above, there is
n ? 1 such that f n(~) = f ~‘ (r~). To this end, since ~( f ~(~)) _ ~z( f n(r~))
for every n ? 1, it suffices to show that there exists n ? 1 such that f ’n (~ )
and f n ( r~ ) are both in Eo.
To proof the above assertion we introduce the following notion: Given

x E ( - ~ , ~ ) , we define the falling time p (x ) of x to be the smallest integer
j ? 1 such that 0) E Eo. The same kind of argument as in (3)
gives, recall Al,

Set y = 1 - ea-/3 > 0. Up to taking 8 small, we may suppose that
p (x) ? H (8 ) is large enough so that the previous relation implies

in particular x ~ 0 implies p (x )  oo.

Now, write $ = (z, k) and 1] = (z, l ) . The definition of Aj 1 ensures

that the f-orbit of z E A 1 is disjoint from the critical orbit, and so

p(fn(z)) is finite for every n ? 1. Suppose that there is no n ? 1 such
that both f n (~ ) and f n ( r~ ) are in Eo. Then each of their orbits must start
climbing the tower (in its corresponding block), before the other falls
down to Eo. That is, there must be an infinite sequence (in order not to
have f ’~ (~ ) and f ~‘ ( r~ ) both in Eo) of times 0 1  v2  ... such that

(z) E ( - ~ , ~ ) (one of the orbits moves from Eo to Ei 1 or to E_ 1 ) and
+ (z)) (while the other is still climbing up) for all i  1.

To check that this leads to a contradiction, we write pi = 
and note that if 1 ( I X 
So we have



273R.J. METZGER / Ann. Inst. Henri Poincare 17 (2000) 247-276

and in the last implication we use (A2).
Combining this with (13) and  ~~lS, we get

The last term is greater than or equal to which implies
pi+1 C pi (s - 1) Is for every i ? 1. Since pi are positive integers, the
sequence (Pi)i can not be infinite. This gives the contradiction we are
looking for. D

Now, Propositions 5.13 (exactness), 5.14 (quasi-compacity), 5.15

(decay of correlations) of [14] and also the Central Limit Theorem are
deduced with the same arguments.

7. THE SRB MEASURE FOR THE CONTRACTING LORENZ
ATTRACTOR

Nowadays there exists many literature about the strange attractor first
discovered by Lorenz [8], as a truncation of a Navier-Stokes equation.
One of them is the geometric model introduced by Guckenheimer
and Williams in [3], called the Expanding Lorenz Attractor. More

explicitly, they found a family of vector fields such that it is

linear in a neighborhood of the origin containing the cube { (x , y, z) E
1 } and with eigenvalues ~.1, ~.2, ~3 satisfying ~,2 

~,1 i  0  À3 and À1 + ~,3 > 0, and with both trajectories of the unstable
manifold intersecting the top of the cube, as in Fig. 1. So if we call U the
union of the cube with a neighborhood of the unstable manifold, there
exists an attractor A = where X~ t is the flow of the vector

field. 
"

The Contracting Lorenz Attractor arises in a similar way if we replace
the expanding condition ~,1 + ~,3 > 0 by the contracting condition +

~,3  0, see [11]. By construction, the top of the cube is a cross section Q
for the flow. More explicitly, there exist a curve E (that we can assume to
be the intersection Q with the plane {x = 0}). So there exist a first return
map (a Poincare map) of the form
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This Poincare map reduces in a wide sense the study of the dynamics
of the Lorenz attractor to the study of the map P. But also the form of
this map, that says that the leaves with x = cte are mapped to leaves with
x = f (cte), allows another simplification if we project along the stable
leaves, see [11]. So, we can study the one-dimensional map defined by
f.
By an SRB measure for the flow we mean a measure v, invariant by

the flow, define on JR3 such that its support is contained in the attractor
and satisfying

for almost all x contained in the basin of attraction U, and for every
continuous function ~p : I~3 ~ R.
To construct an SRB measure for this kind of flows we will assume

that they define one-dimensional maps satisfying conditions (AO)-(A3).
A. Rovella showed that this kind of flows have a kind of persistence, see
[11]. So we are dealing with a wide class of flows.
So let f be the projection along stable leaves of the first return map of

the contracting Lorenz attractor. By Theorem A, f has a SRB measure
We can consider this measure as defined on the ~-algebra generated

by sets containing whole stables leaves. If we consider the push forward
of this measure by the Poincare map P, i.e., P*~c(B) _ we can take

the weak* limit of the sequence of measures as a measure on the

intersection of the attractor with the cross section Q, which is SRB.
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Now, we can saturate this measure along the flow in the following way.
Let T(Z) be the return time of the point z E so that P(z) = 
With this definition we take our measure v in U as

The denominator is the term of normalization of the measure. This

procedure gives a well define measure since ~c is absolutely continuous
with respect to the natural Lebesgue measure of the unstable manifold
and of bounded density. The term of normalization is finite since

t (z ) : log(d(z , ~ ) ) . This is a standard procedure, see for example [ 14]
Chapter 6.

With this construction it is not difficult to verify that v is a SRB

measure for the Contracting Lorenz Attractor. On the other hand, this
measure is unique. In fact, if v’ is another SRB measure we can define

~ u~s ~r -

for every borelian I~’ c Q and we will obtain an SRB measure on the
section Q. Since this measure is unique we have = and recovering
the measure by means of the definition in ( 14) we also have v’ = v.
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