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ABSTRACT. - We define a "renormalized" Morse index, and prove a
Bahri-Lions type result for critical points of E (u , v ) = 

H (x, u, v) } dx; i.e., we establish an a priori bound for critical points
with bounded Morse index. @ 2000 Editions scientifiques et médicales
Elsevier SAS

RESUME. - Nous definissons un indice de Morse generalise pour les
points critiques de la fonction E ( u , v ) = Vv - H (x , u, v ) } dx
defi ni sur x 

Le but principal de ce travail est la demonstration d’une estimation
de type Bahri-Lions [2] pour les points critiques. Nous montrons pour
chaque entier m e N que 1’ ensemble des points critiques dont l’indice
renormalisé  satisfait  x m est borne dans x @ 2000

Editions scientifiques et médicales Elsevier SAS
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1. INTRODUCTION AND MAIN THEOREM

In [1] we obtained existence and multiplicity results for critical points
in x of the functional

whose Euler-Lagrange equations are the following semilinear elliptic
system

with Dirichlet boundary conditions. If one chooses

then (2) becomes

Our method in [1] is to use Floer’s version of Morse theory. In fact our
motivation for this work and [1] was to see how well Floer’s approach
adapts to PDE problems involving indefinite functionals like fH . In
Floer’s approach one defines a "renormalized Morse index" for critical
points, and then defines homology groups which allow one to estimate
how many critical points with a given index f H should have. It turned
out in [1] that Floer’s method can indeed be used in a straightforward
way, provided one can establish enough compactness, both for the critical
points, and for the orbits of the gradient flow which connect the critical
points. To our surprise we found that the flow which gives the best
compactness properties for the connecting orbits is the gradient flow in
HJ (Q) x HJ (S2), or more generally, HS x H2-s. This flow is well posed,
in contrast with the L2 gradient flows that are usually chosen to define
Floer homology. For the L2 gradient flows ill-posedness of the initial
value problem caused by ellipticity of the gradient flow PDE is largely
responsible for compactness of the set of connecting orbits.

After establishing the Morse relations, and from there existence and
multiplicity results for critical points of fH in [1] it was natural to ask

what could be said about the renormalized Morse index of critical points.
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To do this we needed a compactness theorem for critical points with
bounded index. Our main result in this paper is precisely such a theorem:

THEOREM 1 A. - Let S2 C be a bounded domain with smooth

boundary a SZ . We assume n > 3, and we assume the system (4) is

superlinear, i. e., p, q > l, and subcritical

For any m ~ N there is a constant Cm depending on a, band Q, such
that any critical point of fH with lower index m satisfies

We recall the definition of the renormalized index in Section 2 below.

This theorem is similar to a theorem of Bahri and Lions [2] (see also
Yang [8]) who show that boundedness of the Morse index of solutions
of the scalar equation Au + u p = 0 imply a priori L °° estimates for
the solutions. We cannot imitate their proof however, since they use the
minimax characterization of eigenvalues + V (x ) in terms of the
quotients

(See [3, Chapter 6].) This description always deals with "the first n
eigenvalues" which makes no sense in our setting, since the second
variation d2 fH(Z) at a critical point ,z E Co (S2) x Co (S2) always has
infinitely many positive and negative eigenvalues. In Section 3 we
overcome this problem by giving an alternative description of the index
of a critical point z in terms of the spectrum of an integral operator
associated with the matrix

In Section 4 we begin the compactness proof along the same lines
as Bahri and Lions. Assuming compactness fails, we use a blow-up
argument to reduce the problem to that of computing the index of entire
solutions to the "constant coefficient version" of (4), i.e., (4) with a(x)
and b (x ) independent of x. This prompts us to study entire solutions,
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which we do in Sections 5-7, where we prove two Liouville type
theorems. In Sections 8-10 we then complete the compactness proof.
The proof we give actually applies to more general functions H.

To state the more general result we consider a sequence of functions
x II~2) . We say this sequence satisfies condition (*) if

This hypothesis is satisfied by "lower order perturbations" of (3), i.e.,
functions of the form

with

and similar growth conditions for the first and second derivatives of h.

THEOREM lB. - Let be a sequence of functions satisfying (*),
as well as

Then any sequence zk of critical points of with uniformly bounded
renormalized Morse indices is uniformly bounded in L°°(SZ; 

The method used in this paper appears to give an optimal result with
respect to the exponents p and q. On the other hand our method does

impose restrictions on d2H(z) and on the dimension of the domain. The
method used by Bahri and Lions and by Yang for semi-definite elliptic
equations does not share these restriction due to the direct variational
characterization of the eigenvalues which is possible in the semidefinite
case. We believe that the imposed restrictions on d2H(z) and n are of
technical nature and that the result (Theorem 1A) should hold true under
milder hypotheses on and for all n ~ 1.
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2. THE RENORMALIZED INDEX

The second variation of fH at a critical point z = (~) is given by

d2 fH(z). (~ ~) = (~~ ~ E H2 n Ho (Q; JR2).
where E is the elliptic operator given P(x), with

The operator E is elliptic and self-adjoint. It is also a bounded pertur-
bation of the operator -all whose spectrum consists of the bi-infinite
sequence of eigenvalues = l, 2, ...}, where ~.k are the eigen-
values of - A on Q with Dirichlet boundary conditions. Thus E also has
a bi-infinite sequence of eigenvalues and the ordinary Morse index of the
critical point z is infinite.

Let S2 be the 3-dimensional space of symmetric 2 x 2 matrices, and
let ~t = L°°(S2, ~2) be the space of "potentials". We will first define
the index of E = P(x) if ~ is nondegenerate (invertible), so let
i3o be the set of P G i3 for which -ao - P(x) is invertible. i3o is
an open subset of ~3, and its complement can be written as the union

~3~, where i3i consists of those potentials P for which P(x)
has i-dimensional kernel. Each 03B2i is a smooth submanifold of 03B2 with
codimension + 1)/2 (see [4]).
We will define the index p of the operator P(x) by requiring

that it be locally constant on i3o, and by specifying how P(x))
changes when P crosses from one component of ~Po to another. The
following lemma makes this possible.
LEMMA 2A. - has a natural co-orientation.

Proof - Let Po A co-orientation of i3i at Po is an orientation of

By definition 0 is a simple eigenvalue of Po(x). Standard
perturbation theory implies that the operator -80 - P(x) has a simple
eigenvalue À(P) near 0 for all P G i3 near Po. The function P H À(P)
is smooth, and its derivative is given by
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where ~P is a unit eigenvector P (x ) for the eigenvalue ~, ( P ) .
If 03B4 P ~ TP0 03B2 is not tangent to then by the implicit function theorem
d~, ( Po) ~ ~ P ~ 0, and the sign of this expression provides us with a co-
orientation. D

The proof actually provides us with two co-orientations: we will call
8 P positive is negative( !)

Given S = - 8A - P, with P E we choose a generic path {Po ( 0 
o C 1 } connecting Po = 0 to Pi = P. A generic path will not intersect any
of the 03B2i with i  2 since they have codimension 3 or more. A generic
path can intersect but we may assume that it does so tranversally. The
co-orientation then assigns a sign to each intersection of the path with  1 .
We define the sum of these signs to be ~c (~) . A generic homotopy of paths
will also miss all the 03B2i with i  2, and will also be transversal to 
Therefore the number of intersections (counted with orientation) of the
path with ~ does not depend on the path.

Briefly, ~c (~) is the number of positive eigenvalues of So = - ao - Po
which become negative as o increases from 0 to 1 minus the number
of negative eigenvalues of ~03B8 = - ao - Po which become positive as o
increases from 0 to 1 (cf. the "spectral flow formula" in [6]).

Proof - Since is open we may assume that Po + EI for some
small e > 0. Now let Po = 9 Pi + (1 - 0)Po. One has ~I,
and any sufficiently small C~ perturbation of this path will also have

> 0. For a generic perturbation (6) tells us that every intersection
of the perturbed path with ~3~ is positive. D

It is relatively straightforward to compute the index of operators with
constant coefficient potentials. Let

where A, B, C are constants.

LEMMA 2C. - If -C ~ ,J(AB) is not an eigenvalue of -0, in

particular if A B  0, then P E 03B20. In this case the index of -~0394 - PA, B, c
is determined as follows:

(a) If 0 then o;
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(b) If AB > 0 and A, B > 0 then PA,B,c) is the number

of eigenvalues lying in the interval -e - J(AB)  ~, 

-C + ,J(AB);
(c) If AB > 0 and A, B  0 then PA,B,C) is minus the

number of eigenvalues of -0 lying in the interval - e - ,J (A B) 
~,  -C + ,J(AB);

Proof. - For one has ( ~ ) E PA,B,c) iff

Add B times the first equation to (C - A) times the second to find that

A similar manipulation shows that 1/1 also satisfies this equation. If

,J(AB) are not eigenvalues then this equation forces both
~ and 1/1 to vanish, so that 
Assume AB  0 and Since i3o is open, we can perturb

A and B slightly to cause A B  0. Then, keeping A and B fixed, we
can vary C without ever causing -~0394 - PA,B,C to become singular; we
move C to C = 0. Finally we let A and B move linearly to A = 0 and
B = 0, and again our operator - 8A - PA,B,C remains nonsingular, while
the potential P at the end of these deformations has become the zero
potential. Hence the original operator - 8A - had index zero.

Let A > 0 and B > 0, and assume again o. After perturbing
C slightly we can assume that - C is not an eigenvalue We now
deform A linearly to 0, i. e., we consider the operators - 8A - with

0  8  1. This operator has a monotonically decreasing potential, so its
index drops at each 8 for which it becomes singular. Thus for each 8 for
which -C ± (03B8 AB) is an eigenvalue the index PeA,B,C
jumps by the multiplicity of the eigenvalue in question. The end result
of this deformation is a nondegenerate operator with A B = 0. We have
just seen that such an operator has index zero, and hence the index of
our original - 8A - PA,B,C must equal the number of eigenvalues 
counted with multiplicity in the interval + C ~  

In the remaining case, A  0, B  0, one can apply the same argument.
The only difference is now that the deformation -8A - has

monotonically increasing potential, so one arrives at the same numerical
value, but the opposite sign for the index. D
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In [1] we also introduced an upper and lower index ~.c+ (-ao - P (x))
and ,c.c _ ( - ao - P (x ) ) for degenerate critical points, which are defined by

They satisfy

3. A VARIATIONAL PRINCIPLE FOR THE INDEX

and assume that A (x), B (x) and e(x) are pointwise nonnegative. This
implies that the operator -A + C (x ) is invertible. We define the bounded
compact operator

on L2(Q). One can write Tp as (Sp)* Sp, where

from which one sees that Tp is selfadjoint and nonnegative.
LEMMA 3A. - The operator ~ is nondegenerate iff 1 is not an

eigenvalue of Tp . The Morse index ofs equals the number of eigenvalues
~, of Tp with ~, > 1. If E is degenerate, then dim kern E coincides with
dim kern (Tp - 1). The lower index of ~ is the number of eigenvlaues
of Tp exceeding 1; the upper index is the number of eigenvalues ~, of Tp
with ~ > 1.

Proof - E is degenerate iff there are (~~ such that
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Since 0 the operator has a bounded inverse (e(x) -
L 2 ( S2 ) . This allows us to eliminate after which we find that

E is degenerate exactly when there is some $ with

i.e., whenever 1 is an eigenvalue of the operator TP = (C - 0)-1 B(C -
0 ) -1 A . This operator is formally conjugate with Tp, namely =

To compute the index of E, let A and B vary monotonically to 0,
and count the number of times E and Tp - 1 become degenerate: both
operators vary monotonically, so this number gives both the change
in index of E and the number of positive eigenvalues of Tp - 1.

Since operators of the form -~0394 - ( ° -oc) are always nondegenerate
(provided C(x) > 0 of course) they all have the same index: this index
must be the index of -~0394 itself, i.e., zero. a

COROLLARY 3B. - If either A(jc) = 0 or B(x) - 0, then E has
index 0.

Proof. - The operator Tp vanishes, and hence has no eigenvalues
exceeding 1. a

COROLLARY 3C. - If A(x) = B(x), then the index of ~ equals the
number of negative eigenvalues of the Schrödinger operator - 0 -
A(x) + C(x).

Proof - The operator Tp is the square of 0)-1 which has

eigenvalue 1 exactly when the Schrodinger operator -A + A (x) + e(x)
is singular. Replace A (x ) with 9 A (x) , and let 9 vary monotonically from
1 to 0. All negative eigenvalues of -A + A(x) + e(x) then move to
the positive real axis, positive definite. Every time an
eigenvalue of -A -f- B A (x ) + C (x ) crosses 0, an eigenvalue of TP03B8 crosses
1. Hence Tp has as many eigenvalues with À > 1 
has negative eigenvalues. D

The following corollary sheds some light on our hypothesis concerning
the signs of Huu, etc. in Theorem lB.

COROLLARY 3D. - If H satisfies Huu > 0, Hvv > 0 and Huv  0, then
fH has no critical points with negative renormalized Morse index.
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4. THE BLOW-UP ARGUMENT

Let H(k) be a sequence of functions in satisfying the
conditions of Theorem lB. Assume that there is a sequence of critical

points Zk = (uk, vk) of with

Assume also that the renormalized index of the zk is 1. Then we
define

We assume that the supremum is attained in Pk E Q and define

with a, f3 > 0 to be specified in a moment. We also define the rescaled
domains

A short calculation shows that (Uk, Vk) is a critical point of on

Co ( SZ k ; II~2 ) , where

and is as described in the condition (~) . By our assumption (*) we
can extract a subsequence for which U, V) converges in to

for certain positive constants a, b. The H ~k~ ( y, U, V ) then converge in
Cloc to

By choosing a and ~8 appropriately we can arrange that H is given by
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The ( Uk , Vk ) are uniformly bounded in L °° , and satisfy the Euler-
Lagrange equations,

Elliptic regularity implies that the ( Uk , Vk ) are uniformly bounded in 
for any a  1. Hence there is some subsequence for which the ( Uk , Vk )
converge in The limits ( U*, V* ) are then bounded solutions of

The domain of U and V is Q* = limk~~ Qk. If

then we can extract a subsequence along which Qk converges to Q* =
Otherwise we recall that 8Q was assumed to be smooth, so that

along some subsequence the Qk converge to a half space Q* containing
the origin in its interior.

For now we shall assume that Q* is all of and at the end of this

section we indicate which changes must be made if Q* is a half space.
We consider the index of the solutions zk = (uk, vk). By Lemma 3A

the index of .zk equals the number of eigenvalues above 1 of the operator
Tk = (Sk)* Sk, with

We have

Using these relations one then easily finds how Sk changes under
rescaling.
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where Sk is the operator given by

We now let k tend to infinity.
LEMMA 4B. - If n ~ 3 then

uniformly on compact sets in Here S~ is defined by

Here ( - 0 ) -1 is the Newton potential.

Proof - It follows from C2 convergence of H ~k~ to ~~ + ~ that

uniformly in compact subsets of 
For n > 3 the Newton 2)wn is positive (wn is the

surface "area" of the unit sphere in Together with 0 and
the maximum principle this implies that

for any f E C°° (S2k) . This uniform bound allows one to pass to the limit
and conclude that

In Section 8, Theorem 8A, we will prove for arbitrary mEN and £ > 0
that there exist ~i E i = 1, ..., m, for which 
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for any linear combination $ = + ... + Choose £

so small that > 1. Then we find that for sufficiently large k
there is an m -dimensional space on = ( ~/r~, > ~ ~ ’~/f ~ ~ 2 ,
and hence that Tk must have at least m eigenvalues larger than 1. This

contradicts our assumption that the indices of the zk were all less than m,
so that our main theorem is proved as soon as we establish Theorem 8A.
We now briefly consider the situation in which dist( Pk, a S2 )  In

this case we may assume after passing to a subsequence that Pk tends to
some point P* on the boundary. One now "flattens the boundary", i.e., one
chooses coordinates ~1, ... , ~n near P* such that P* becomes the origin,
and Q gets mapped to the half space = {~ > 0{ .
Then we define

where % r+ X (~ ) is the inverse to the chart x « (~l (x), ..., ~n (x)).
Then the Uk and Vk are defined on BRk n IHIn , with Rk - and they

satisfy (8), provided one interprets A as ~k 2 x the Euclidean Laplacian
in ~ coordinates. In the limit k ~ oo this equation ends to (9), and one
can extract a subsequence for which the Uk and Vk converge to bounded
nontrivial solutions U and V of (9) on Hn which vanish on ~Hn =

{OJ x By odd reflection in aIHIn one can extend such solutions to
entire solutions of (9), and all results in the following sections therefore
apply. 

_

For n > 3 the operator Sk also converges to

for the same reasons as in the case where Q* = R". Rather than

considering the action of %* on functions on IHIn , one can consider the
associated operator

acting on odd functions on JRn (odd =

-~ (~71, ~2, - .. , All arguments in the following section apply to
this operator without modification, and thus one can again show that
~ ( Sk ~ I I > ~ ~ ~ I ~ holds on some m dimensional subspace of L 2 ( SZ ) for large
enough k.
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5. THE BLOWN-UP EQUATION

THEOREM 5A. - Let u, v be solutions of (9) on the ball with radius R.Then one has for large enough m and arbitrary small e > 0 
7?.

where p (x ) = 1 - [ x [ 2. The constant C depends on e, m, p, and q but
not on R or the solutions u, v. Here m is large enough if it exceeds
2(p + 1)(q + 1)l(pq - 1).

COROLLARY 5B. - If (u, v) are bounded entire solutions of (9), with
[ u finite, then

In particular the (q + 1)-norm of v is also finite.

We will show later on that u and v must actually vanish.

Proof - Theorem 5A implies that

satisfy

Letting R t oo one concludes that J converges, and that
( 1 - ~) I  J  (1 -~- E) I for any £ > 0, where I = J Thus 1 = J,
as claimed. D

We now prove Theorem 5A. We may assume that R = 1, since the

general case then follows by rescaling. Put § = pm and compute:
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Hence, using = we arrive at

for arbitrary a > 0.

LEMMA 5C. - For arbitrary u E C2 (B), 1  p  oo and 8 > 0, there
is a Cs, p  oo such that

Proof. - This follows from L P interior estimates for the Laplacian, and
a covering argument. D

We apply the lemma to (11). For the third term in (11) we find, using

We now observe that ( p + 1 ) / p  2  q + 1, so that

and so that one has xr  03C4-r’/r + 03C4xr, r’ = r/(r - 1), for any x  0 and
r > 0. Thus
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provided m > 2 (q + l)/(r - 1 ) = 2(p + + 1 ) / ( pq - 1 ) . Apply this
inequality to (12), and you get

~ J

which implies the theorem.

6. A LIOUVILLE THEOREM

In this section we will prove:

THEOREM 6A. - Let u and v be bounded entire solutions of (9). If
Rn |u|p+1 is finite, then both u and v vanish.
We have shown that 1 

 oo implies that J 1 
 oo, and

that both integrals are in fact equal.
The idea of the proof is as follows: first we show that the action of the

solution (u, v )

is finite. Then we observe that for any £ > 0 the functions

with ~ _ ~,-~pq-1»2, are also solutions of our system. Moreover, these
solutions also have finite action. Direct substitution shows that the action
of (u~, vÀ) is

with

On the other hand the (u ~ , v ~ ) are critical points of the action, so
E(u~, v~) should not depend on ~,. This can only happen if u and v both
vanish.
We now go through the details of the argument.
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LEMMA 6B. -Ifu E then E Lr and E LS where

Inparticular, and -~- E Lt for some 1  t 

nf(n - 1).

Proof - We have Au E and u E so that, by interpolation,
|~u [ E Lr, where

which implies the first part of ( 15). The second part follows in the same
way.

Using the subcriticality of p and q, one finds

Holder’s inequality and v E Lq+l then imply |v~u| E L t , where

This lemma implies the action is well defined, and moreover that, by
dominated convergence

for any smooth compactly supported function with r~ (o) = 1. We shall
assume that

LEMMA 6C. -
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Proof. - Formally we integrate by parts and use the Euler-Lagrange
equations. To deal with the infinite domain, we work with E R :

where ~7R(x) = r~(x/R). Combining u0v E L‘ with t  n/(n - 1) and
one shows that the last integral vanishes as 7? 2014~ oo. D

This lemma directly implies that the action scales as stated in (14).

Proof - Again we deal with E R first. Let h = ~,-1 and ~,-1.
Then

On substituting

and

one ends up with four integrals. Two of these are bounded by

As in the previous lemma one shows that this is o( 1 ) for R - oo.
The other two integrals are of the form We

now recall that r~ (x ) == 1 for 1/2, so is supported
on B R B and is bounded by C/R on this annulus. By Holder’s
inequality we then get that

which, since is o( 1) for large R. Thus we see that

d~ E R = 0. D
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The Liouville theorem now follows immediately, since E (u ~ , v ~ ) =
v) is found to be constant, and hence must vanish. The explicit

formula for E (u, v) then implies u n v = 0.

7. A SECOND LIOUVILLE THEOREM

THEOREM 7A. - Let u, v be bounded entire solutions of (9). Then,
if (a + b1x1 + ... + belongs to both u and v
must vanish.

Proof - If bi = 0 for all i , then our hypothesis is  |u(x)|p-1 dx 
oo, which by boundedness of u implies J dx  oo. The first
Liouville theorem now forces u and v to vanish.
Assume henceforth that some bi ~ 0.
Since u and v are bounded solutions, their gradients are also bounded.

Let M = sup IV u I. For any x E JRn we define

On the larger ball 5Bx it follows from |~u|  M that we have

and hence

On Bx we have

for some constant which only depends on a, bi , ... , bn. Hence
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Putting (18) and (16) together we get

We can now choose xi , x2, ..., such that the Bxi are pairwise disjoint, and
such that the 5Bxi cover JRn (see [7, Section 1.1.6]). One then has

and we find again 1 
 oo, which implies that u and v vanish,

as claimed. D

By slightly modifying the proof we get the following stronger version
of this theorem.

THEOREM E with + ~1/r~ (x) ~ ( -~ 0 for
Ixl -~ oo. Then (a + ... ~ bn xn ~- ~ (x ) ) v (x ) (q 1 »2 can only be in

Proof. - The proof proceeds exactly as before, the only difference
being that (17) no longer holds. However, outside some large enough
ball BR1 one has |03C8|   a and « so that (17) does hold for
all balls Bx outside B R 1 . D

8. INDEX OF ENTIRE SOLUTIONS

Let u and v be entire solutions to (9). We will essentially show in this
section that the generalized Morse index of such a solution is infinite.
Thus we would like to consider the operator

where 03A8 is multiplication with and 03A6 is mutiplication with
~ u (x) ~p-1»2. Unfortunately this operator is not necessarily well defined
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on L 2 (JRn), even if we restrict its domain to, say Thus instead
of studying T we consider

i.e., for $ E C°’° we define

This way we have a continuous integral operator from C°° to L °° .
Formally, T ~5 = S* S~, where S* is the "L2-adjoint" of S. To make this

precise, we choose a domain for S which makes it a possibly unbounded
operator in L2. Let D c C°° be the subspace of all testfunctions which
satisfy

To motivate this definition recall that the Newton potential of a compactly
supported function 1/1 has an asymptotic expansion of the form

where r = lxi, x = x/ r and the Mk(x) are spherical harmonics of order k.
The Mk depend linearly on the kth order moments of 1/1. If the moments
of order  k - 1 of 03C8 vanish, then the Newton potential (2014 0394)-1 03C8 decays
like 

Consequently, since D consists of those $ for which the moments of
order 0 and 1 of vanish, S~ (x) is bounded by C (~) / rn when
~ E D. For n > 3 this implies 5’~ E i.e., our definition of D
makes S : ~ -~ L2 a well defined (perhaps unbounded) operator.
The main result in this section is

THEOREM 8A. - For any ~ > 0 and any integer m there exist 03C61, ... ,
~m E ~ such that

holds for = c103C61 +... + 
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Since formally we have (~, T ~) _ we find by choosing £ >
1 that (~, T ~) > ~~ ~ II 2 on some m dimensional subspace of L2,

which, in view of our characterization of the generalized Morse index,
we interpret as index (u, v) > m. Since m is arbitrary we say (u, v) has
infinite index.

The main technical tools in proving the theorem are the following two
lemmas.

LEMMA 8B. - The domain ~ is dense in L2. The operator S : ~ ~
has a closed extension.

Proof - If D were not dense, then some g E L 2 would be perpen-
dicular to D. By linear algebra this g must be a linear combination
of and the ( 1  i  n). Thus for some a, bi we
find that (a + b1x1 + ... + is an L2 function. Our second
Liouville type theorem excludes this.
We now prove that is closeable, i.e., we show that for any sequence

fi G D with ~fi~L2 ~ 0 and Sfi - g in L2 one must have g = 0.
Let

Since u E L°°, and since fk -~ 0 in L2, it follows that 0 in L2,
for V2hk is the Riesz transform of fk, and the Riesz transform
is bounded on L2.
The set 0 = {x E [ 0} is open and nonempty, and since

S fk = the hk converge in to 

It follows that hk actually converges in to some function h,
whose second derivatives vanish, i.e., h (x) = a + b1xl + ... + bnxn.

Thus we find that g = (a + b1x1 + ... + belongs to
The second Liouville theorem now forces u --_ v --_ 0. D

LEMMA 8C. - Let = r~(x/R)u(x)~p+1»2. Then

This lemma does not claim that cpR G D, in fact one expects this not to
be the case in general. Thus ~ S03C6R ~ is defined by the integral (19), and
may be infinite.
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Proof. - We suppress the subscript R from our notation for the duration
of this proof. Thus

Define 1/1 by

Then, using A v + uP = 0 one computes that 1/1 satisfies

so that

As in Section 4 we define

The Liouville theorem implies that I, J -~ oo as /? 2014~ oo, so by Theorem
4A we have

We now compute the L 2 norm of Scp on BR :

At this point we substitute the formulas (20) and (21) for ~, which on
expansion turns the last integral into one with six terms:
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where

We now proceed to estimate these terms one by one. It turns out that all
terms except K5 can be estimated following the same scheme. We show
how to estimate K4 , and leave the other terms to the reader.

In doing such estimates it is convenient to have a slightly different
notation for the L r norms of functions on We write

With this notation Holder’s inequality appears as

while one has the following estimates for the operator ( - 0 ) -1

Here the last estimate simply states LP boundedness of the Riesz
transforms for 1  p  oo, while the first two are restatements of LP/Lq

mapping properties of the Riesz potentials (see [7, Section V.I]).
We shall also use that the specific form of our cutoff function, i.e.,

q = q (x /R) = (1 - implies
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Moreover, we shall assume that m is "large".
We then have

where

is positive because p and q are subcritical. In this calculation we have
chosen 8 E (0,1) so that we can legitimately apply Holder’s inequality
and the LP mapping properties of ~(-0)-l. The constant 8 must satisfy

Such 8 exist.
As we mentioned before, a similar argument gives exactly the same

estimate for the terms K1, K2, K3, and K6. To estimate Ks we first
observe the following
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By Theorem 4A we have IR = JR + ER, where ER = o ( I R ) as R - oo .
Hence

Here the remaining integral is of the same type as K6 and can be
estimated in the same way as ~6, with the same result. The last term
ER/2 was already known to be o(IR), so the we can finally add all
estimates together to obtain

Since = IR this completes the proof of Theorem 8C. D

9. PROOF OF THEOREM 8A WHEN S IS BOUNDED

If the operator S : ~ -~ L2 is bounded then it extends uniquely to a
bounded operator Sl : L2 ~ L2. When 03C6 ~ C~c(Rn) we have a formula
that defines S~ as a function in (but not necessarily L2). The
following lemma addresses this ambiguity.
LEMMA 9A. - If S is bounded then = S03C6 for all 03C6 E 

Proof - Let 03C6n ~ D converge in L2 to $ E Define

Then, since the Riesz transforms ~ 2 ( - 0 ) -1 are bounded on L 2 , 
converges in L2 to Moreover, converges to p + a + b . x
in W o~ , for some a E R, b E But then = 

converges to pq~v~~q 1»2(~ ~-a -~-b ~x) so that ~v~~q 1»2(~ ~a -~-b ~x)
belongs to L2. Since 1/1 is the Newton potential of a compactly supported
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function, we may apply Theorem 7B to conclude that a and b vanish.
Consequently, = lim S03C6n = = S03C6. D

LEMMA 9B. - For any f E one has

Proof - First assume that f is compactly supported, i.e., supp f C
BR~ for some Ri > 0. Since cpR = and = 1 for

~x~ [  1/2, the inner product (cpR, f) is independent of R for R > 2R1.
But dx becomes infinite as R - oo, so for

compactly supported f the lemma holds.
For general f E L 2 we decompose f = fo + fl, with fo compactly

supoorted and £. Then

This holds for arbitrary £ > 0 and thus the lemma holds for all f E
LZ. D

LEMMA 9C. - Given 0 and m there exist Ri  R2  ~ ~ ~  Rm
such that

Proof - By Theorem 8C we can assume that ~~ S~‘ ~~ 2 > pq - ~,
provided all Ri are chosen above some Re. We choose R1 1 = Re and
proceed by induction. Let R1, ... , Rm- be given. Since S is bounded its
adjoint S* is well defined, and we can write ( S~m , S~~ ) _ (~m , 
By Lemma 9B we can therefore make ( (S~m , S~~ ) ~ [  ~ for all j  m
by choosing Rm sufficiently large, while Rm > R1 1 = Re ensures that

0

To conclude the proof of Theorem 8A, at least assuming boundedness
of S, we note that $ = c103C61 + ... + satisfies
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and

so that

10. PROOF OF THEOREM 8A WHEN S IS NOT BOUNDED

We recall how one constructs the bounded self-adjoint operator
T = (I + S* S) -1 from the closed densely defined operator S (see [5,
Section 118]).

Let QJ be the Hilbert space completion of D with inner product

It follows from the closedness of S that QJ can be identified with a dense

subspace of L2 (the inclusion map i : ~ -~ L2 extends naturally to a
bounded linear map i’ : L2; closedness of S is needed to conclude
the injectivity of i’ . )
The Riesz representation theorem implies that for any f E L2 there

exists a g E QJ with

We define T f = g. One then easily shows that T is a bounded selfadjoint
operator on L 2 .

LEMMA 10A. -Assurne S is unbounded. Then T is injective, and
0 E Q(T).

Proof. - If T f = 0 then f 1 ~, so f = 0, which proves injectivity.
Assume 0 is not in the spectrum of T. Then T is invertible, and we

have for arbitrary $ e 2)

This implies S is bounded, against our assumption. D
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By the spectral theorem for bounded self adjoint operators we can write
T ~, d P~, , where 0  ~,  1 ~ are the spectral projections of T.
Assuming that S is not bounded we find that 0 is in the spectrum of T,
while T is injective, i.e., 0 is not in the point spectrum of T. It follows
that there exist 0 such that the projections yr~ = P~,n - are non

zero. Choose 03C6n E range(03C0n) with = 1.

LEMMA 10B. - The ~n are mutually orthogonal. They belong to ~1 so
that is well defined, and they satisfy

Proof - Let

then = ~n , so pn E range ( T ) C QJ and = We have

For k ~ 1 we have (~k, ~/) = 0 and also

If we assume that À1  1/(1 + then we 2 pq
for all n. Moreover, since the ~n and are pairwise orthogonal sets,
any linear combination $ = c103C61 +... + will also satisfy ~S03C6~2 
2 pq ~ ~ ~ ~ ~ 2 . Since D densely in the ~ norm, we can approximate
~1, ... , ~m in ~ as closely as we like by ~~ E ~; in particular any linear
combination ~’ = + ... + will satisfy ~~ S~’ 1~2 > pq ~~~’ This

completes the proof of Theorem 8A, and hence of the main Theorem lB.
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