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ABSTRACT. - We present a method of constructing ~-optimal controls
in the feedback form for state constraint problems.
Our method is as follows: We first find feedback laws directly from the

associated Hamilton-Jacobi-Bellman equation and an approximation of
the value function by the inf-convolution. We then construct piece-wise
constant controls so that corresponding cost functionals approximate the
value function of state constraint problems. © 2000 Editions scientifiques
et medicales Elsevier SAS

RESUME. - Nous presentons une methode de construction de controles
e-optimaux pour des problemes avec contraintes d’état.
Notre methode est la suivant : Premierement, nous trouvons des lois en

feedback directement a partir de 1’equation de Hamilton-Jacobi-Bellman
associee et d’ une approximation de la fonction valuer par inf-convolution.
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Ensuite, nous construisons des controles constants par morceaux dont le
cout approche la fonction valuer du problemes avec contraintes d’ état.
© 2000 Editions scientifiques et médicales Elsevier SAS

1. INTRODUCTION

Since the introduction, by Crandall and Lions in 1981, of the notion
of viscosity solution, a notion of weak solution of partial differential
equations, a matter of its importance has been the usefulness in justifying
that the value function of an optimal control probldem is a weak solution
of the associated Hamilton-Jacobi-Bellman (HJB for short) equations.

Although this characterization is important in itself and has many
applications, it is still desirable that the notion of viscosity solution could
be directly used to construct an optimal control like in the classical
heuristic arguments which we present below. Given an optimal control
problem, the classical heuristic arguments work rigorously only under
a strong regularity assumption on the value function which we cannot
usually expect. Indeed, as is well known, there are many optimal control
problems which do not have any optimal control. In this viewpoint, it

is natural and important to seek for an ~-optimal control for which, by
definition, the cost functional differs at most 0 from the value

function at the given point in the state space.
It was recent that Clarke, Ledyaev, Sontag and Subbotin [4] introduced

a method of building an ~-optimal control in the feedback form for
a given optimal control problem via the associated Hamilton-Jacobi
equation in their study of feedback stabilization.
Our aim here is to extend the method due to Clarke, Ledyaev, Sontag

and Subbotin to state constraint (SC for short) problems and thus to
present a way of constructing an ~-optimal control in the feedback form
for a general optimal control problem with state-constraint.
One of technical difficulties in this work may be explained as follows.

The newly developed method by Clarke, Ledyaev, Sontag and Subbotin
depends on approximation arguments mostly based on the techniques
of inf-convolutions which give a convenient regularization of viscosity
supersolutions. On the other hand, by the nature of SC problems, in
order to design an ~-optimal control for SC problem, the state space
should not be relaxed or replaced by a larger space. These are somewhat



475H. ISHII, S. KOIKE / Ann. Inst. Henri Poincare 17 (2000) 473-502

conflicting and, in order to solve this technical problem, our strategy
is to replace first the state space by a smaller one and then to make an
approximating argument, so that the state corresponding to the ~-optimal
control obtained in our method is kept in the original state space.
We refer to [1] for a different method of finding ~-optimal controls by

introducing the semidiscrete approximation. See [7] for the study of the
SC problem by this approach.

Before studying the SC problem, in order to illustrate our strategy, we
shall consider the problem in the whole space RN since it is easier than
the SC problem.
We are given functions f and g on RN x A which satisfy that

where [0, oo) -~ [0, oo) is continuous with c~ f (o) = 0. Here, we let
A c Rm (for some integer m ) be a control set.
We denote by A the set of all measurable functions a : [0, oo) -~ A.

For any a E A and x E RN , we denote by X (. ; x, a ) the unique solution
of

which is called the state starting from x with control a. For a E A, we
also write X (~ ; x, a) if aCt) = a for all t > 0.

Throughout this paper we deal with the following cost functional: for
a 

Although our argument in this paper works for more general discount fac-
tor exp ( - fo c ( X (s ; x , a ) , a (s ) ) ds ) , where c : RN x A -~ R is continuous
and positive, in place of e-t, for the sake of simplicity of the presentaion,
we shall only treat the case when c --_ 1 as above.

Next, we define the value function by
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It is well known that the value function satisfies the following HJB
equations in the viscosity sense:

We shall recall an argument to find ~-optimal piece-wise constant
controls for this unconstrained control problem assuming that u and Du
are uniformly continuous.

(Step 1) Fix e > 0. For x E RN, we choose E A such that

(Step 2) Fix xo E RN . Choosing ao = E A, we let Xo ( ~ ) =
X (. ; xo , ao ) for a short period r > 0. If r is small enough, then we see
that

Multiplying the above inequality by e-t , we integrate the resulting
inequality over (0, r) to get

(Step 3) Setting jci = Xo(r), we choose ~i = &#x26;(jci) e A. Again, solve
(1.1) with 03B1 = 2i and x = x1, and denote it by Xi(’). Inductively, we
obtain (ak, ~) = X(r; (~ ~ 2) such that

where X k (t ) = X ( t ; xk , Multiplying ( ( 1. 3 ) k ) by and then

integrating the resulting inequality over (0, i), we take the summation
over k = 0, 1, 2,... to get
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where as(t) = ak for t E [k-r, (k + (k = 0, 1, 2, ...). Therefore, we
have

We will follow this argument but we will have to use delicate tools
which have been developed in the study of the viscosity solution theory
(see Section 2) since we can not expect that Du is uniformly continuous.
For instance, to make ( 1.3)k rigorous, we will need Proposition 2.3. We
also refer to [2] and [1] for the general theory of viscosity solutions for
HJB equations.

Moreover, since we deal with the SC problem, we will have to force
the state (i.e., X (. ; xo, as) in the above argument) in the domain. For this
purpose, we have to select suitable â(x) when x is near the boundary of
the domain.

This paper is organized as follows:
In the next section, we give some basic properties of the inf-

convolution for the reader’s convenience. In Section 3, we discuss several
simple geometric properties, one of whose proofs is given in Appendix A.
We discuss the SC problem for subdomains in Section 4. We show the
main result and its proof in Section 5.

2. BASIC PROPERTIES OF INF-CONVOLUTIONS

We shall give various properties of the inf-convolution of functions.
For a compact subset F of RN, and for a bounded function u : F -~ R,

we define the inf-convolution of u by

For a function f : F 2014~ R, we shall denote by D j f (x) (x E F) the set
of subdifferentials of f relative to F;

Also, the set of superdifferentials of f is defined by :=

-DF(-f)(x) forx E F.
Whenever x E int F, we shall simply write for DF I (x).

Particularly, we will not write the subscript RN if F = RN.
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We will also use the following notation: for a function f : RN -+ R,

We first give some well-known properties of the inf-convolution.

PROPOSITION 2.1. - (1) The mapping x ~ ux(x) - ~x~z/(2~,) is

concave; ux (.) is semiconcave.
(2) D+u03BB(x) ~ ~ for all x ERN and {x ~ RN | D-u03BB(x) ~ ~} is dense

in RN.

We next show some elementary properties for the reader’s conve-
nience.

PROPOSITION 2.2. - Assume that u : F ~ R is lower semicontinuous.

If x E R^’ and xa E F satisfy that = + x~ ~2/(2~.), then
we have

Furthermore, if p E D ux (x) for x E RN, then there is x~ E F such that

Proof - Since we have

we easily see that (x - E 

For p E we choose (xk , pk ) E F x RN such that

Pk) = (x, p) and pk E We also choose xk E F
so that

From the definition, we see that
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for any z E F and y E RN .
Taking z = xk and y = xk + 8s for any s E and 8 > 0 in (2.2), we

have

Thus, sending 8 -~ 0 in the above, we have pk = (xk - xk ) /~, . Hence, we
find xx E F such that p = (x - 

Moreover, taking y = xk in (2.2), we have

Sending k -~ oo, from the lower semicontinuity of u, we conclude the
second assertion. 0

We next present a monotonicity type estimate for superdifferentials of
the inf-convolution of functions.

PROPOSITION 2.3. - For any p E and q E (x, y E
RN), we have

Proof - Setting = ux(x) - |x|2/(203BB), we note 
(x/À) = D+v03BB(x). The concavity of v03BB implies that

Combining these inequalities, we conclude the assertion. p

We recall the following facts from [3].

LEMMA 2.4 ([3]). -Assume that u E C(F, R).
( 1 ) ~ ~ C for all x ERN.
(2) Let X : [o, T) ~ RN be a Lipschitz continuous function. Then, we

see that for almost all t E [o, T)
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3. SIMPLE GEOMETRIC PROPERTIES

Let Q C RN be an open, bounded set.
We shall suppose the uniform exterior sphere condition for S2:

There is 
R > 0 satisfying the following:

For any z E there is x E RN for which B (x , R ) n Q = {z}.
. 

(A2)
Here and later, B (x, r ) denotes the standard closed ball with radius r > 0
and center x E RN .
Our assumption on the vector fields {g(~, a) a E A} is as follows:

There is 03B4 > 0 satisfying the following:
~ For each z there is a E A such that a ) ( > ~ , and 

_

B(x + tg(x, a)~, 8t) c Q for 0  t C 8, x E B(.z, 8) n 72.
(A3)

We denote by A (z) for z E ~03A9 the set of all controls satisfying (A3).
For y ~ 0, we shall define an open subset of Q :

Notice that Qo = Q.
Under these assumptions, we will refer to R > 0 (in (A2)) and 8 > 0

(in (A3)) without mentioning where these come. We will also use the
constant ro > 0 defined by

where Mg is a constant from (Al).
We introduce the set of generalized normal vectors at z E ~03A903B3 for

y E ~~~ ro~:

We define the following set-valued mappings TO: S2 B aS2 and

Ty : S2 B ~03A903B3: for y E [0, ro] and x E S2 B S2y,
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With these notations, we will write

3.1. Geometric properties of Qy

We begin with the observation that (A3) together with (Al) implies the
uniform interior cone property of Qy for small y ~ 0.

PROPOSITION 3.1. - Assume that (Al) and (A3) hold. Let 0 ~ y ~ ro
and z E Then, we have

Proof - Fix x E B (z, ~/3) n Qy, and § E B (0, y ) . Let y E TOz.
Observe that x -f- ~ = y + (x - z) + (z - y) + ~ E B(y, ~), and that
x ~- ~ E Q y + B(0, y ) C Q . That is,

Fix a E A(y) and set = g (x , Hence, by (A3), we have

Set

Noting that ~ ~ ~  2Mg y /~  S/2, we have ij + B (o, S/2) c B (o, ~) . Thus,
we have

Therefore, B(x + t~/2) c S2y for t E (o, ~] and x E B(z, ~/3) n
S2Y . D

In the proof of Lemma 3.6, we will need the following estimate:
COROLLARY 3.2. - Under the same assumptions as in Proposition 3.1

we have
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Proof - Let E S2y for
~ E B(O, 8/2) for small t > 0, we have

Dividing the above inequality by t > 0, we send t -~ 0 to get

Therefore, by (A3), we conclude the assertion. D

To prove Lemma 3.6, we will also need the fact that, under assumptions
(A1)-(A3), we can take a special sphere outside of Qy (y ~ 0),
which touches ~03A903B3. For the reader’s convenience, we give its proof in
Appendix A. As will be seen in Lemma 6.3, to verify that the uniform
exterior shpere condition holds for Qy, we only need to suppose (A2).
PROPOSITION 3.3. - Assume that Al), (A2) and (A3) hold. Let 0 

03B3  ro, x E ~03A903B3 and v E Ny (x) n Then, we have

To estimate the distance from x E Q B Qy to Qy, we give the next
proposition:

PROPOSITION 3.4. - Assume that (A3) holds. Let 0  y  S2. Then,
we have

Remark. - We note that (A3) impose the Lipschitz continuity of ~03A9
(see, e.g., [5]). We also note that the above assertion fails for general
domains. For instance, if Q has a cusp, then the above estimate might
fail.

Proof. - Fix x E 72 B Let z e T°x. Notice that (z - x ~ (  y . Let

E from (A3) for this z E a S2 . Then, we have

Choosing T E (0,8] so that y = 8T, we have
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This implies that z + E Qy. Hence,

3.2. Estimates on the subdifferentials of u ~,

In this subsection, we use the notation: For y ~ 0, let u : R

be continuous with a modulus of continuity For ~, > 0, we define

For x E Q , we choose x~, E such that

Also, we fix ~ e (0,1].
To show that u~, is a viscosity supersolution of an approximate HJB

equation in Lemma 4.1 provided that u is a viscosity supersolution of a
HJB equation, we will use the following observation. We note that the
same idea can be found in Section 3 of [4].

LEMMA 3.5. - Assume that (A3) holds. ~,E. Then, there are
03BB1 = 03BB1(03C9u, ~, 03B4, sup03A903B3 |u|) > 0 and Ci = C1 (8) > 0 such that

Proof - Let z E Tyx C From the definition of ux , we have

By Proposition 3.4, we have
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where M := 4 sup03A903B3 |u|. Hence,

and so,

Thus, setting C = 2 [2 ( 1 ~-- s ) 2 + M], by (3.1), we have

Choose ~,1 > 0 such that

to conclude that

The following lemma gives an essential estimate on superdifferentials
of the inf-convolution 

LEMMA 3.6. - Assume that (A 1 ), (A2) and (A3) hold. Let x E SZ B
S2 y~2, .z E Ty x C and 0  8  1. Then, there is ~,2 = E ~ S ~

sup03A903B3 |u|, 8 ) E (0, ro ] such that

Moreover let y2 = For any Ml > 0, there is ~,3 = ~, ~,

sup03A903B3 |u ( , Ml , Mg) E (0, 03BB2] such that
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Proof - Recall that, from Proposition 3.4,

By (3.2), we have

where

Set r = ~x - z I. . We may assume by choosing ~. small enough that
r  p := R8/2.

Setting v = (x - z)/r, we observe that v E Ny(z) n SN-I. Thus, in
view of Proposition 3.3, we have

Hence, setting $ = z + p v, we have

Thus, we have

Then, we observe that
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Since ~./r = and ~,/r2 = by (3.5), and ~,/rz are
bounded. Therefore, we can choose h2 > 0 so that if 0  ~.  ~,2, then the
right hand side of the above is greater than the given 0.
We assume henceforth that ~, satisfies the condition described above.

According to (3.3), we have

Fix a E A(Tox). By Corollary 3.2, we see that

Writing

where a = (g (x , a ) , v ~ and ~B = (x - x~, ) / ~ x - xx ( v ~ , we have

If we suppose that 0 is close enough to 1 such that 03B403B2/2 - Mg(1 -
03B22)1/2  82/4, then we observe that

Hence, we have

Therefore, there is h3 > 0 such that
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3.3. A property on behavior of states

In this subsection, we observe that the state X ( ~ ; x, a ) for a E A (To x)
does not move closer to the boundary for a short period.
PROPOSITION 3.7. - Assume that (A 1 ), (A2) and (A3) hold. Then,

there is to > 0 such that

Proof - Fix x E ~03A903B3 and a E A(Tox). Write X (-) = X (- ; x, a)
simply.

In view of Proposition 3.1, it suffices to show that there is to > 0 such
that

where = g(x, a)!.
We note that

For any t > 0, choosing r = we have

Setting to = ~/Mg}, we see that r = a)~  b for t E
(0, to]. Moreover, since the right-hand side of (3.7) is estimated from
above by 8r/2, (3.6) is valid. 0

4. SC PROBLEMS FOR SUBDOMAINS

In this section, we always suppose that (Al), (A2) and (A3) hold, and
that 0 ~ y ~ ro.
We shall introduce the value function of the SC problem for Qy . For

this purpose, we define
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We introduce the notation: for z E 

We note that Proposition 3.7 implies that Q~ ~ A(Tox) C A y (x ) for
x E Qy provided y E [0, ro]. Thus, we see that 0 for y E [0, ro]
and x E Q y .
We shall consider the HJB equation:

In order to study the SC problem for Q y, we adapt the following
definition of viscosity solutions of (4.1) in S2y as in [5] :

DEFINITION. - We call u : R a viscosity subsolution (respec-
tively, supersolution) of (4.1) in S2Y if

(respectively,

We call u : R a viscosity solution of (4.1 ) in Qy if it is both a
viscosity sub- and supersolution of (4.1 ) in S2 y.

Here, the superscript and subscript *, respectively, denote the upper
and lower semicontinuous envelopes of the function. See [ 1 ] or [2] for
these definitions.

We now denote by u Y : Q y --~ R the value function of the SC problem
for Qy :

It is known in [5] for example that the DPP holds for My (y ~ 0) : for
s > 0,
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It is also known in [5] that uY is a viscosity solution of (4.1) in S2y in
the above sense. Furthermore, the comparison principle in [5] implies the
continuity of u Y on S2 y .
We begin with the following observation which will be needed in

Section 5:

LEMMA 4.1. - For E E (o, 1 ] and ~. > 0, we set y 2 = Let u E

C(Qy , R) be a viscosity supersolution of (4.1 ) in SZ y . Set 

mf{u(y) + (x - y|2/(203BB) | y ~ SZy}. Then, there are constants 03BB4 =
8 , e, sup03A903B3 |u|) > 0 and C2 = C2 (S , Mg) > 0 such that

Proof - We note that it is enough to show the assertion for p E

Choosing x~, E Qy such that + x~, ~ 2/ (2~,), by
Proposition 2.2, we see that p = (x - E D~ Thus, from
the definition, we have 

y

Hence, we have

In view of Lemma 3.5, there are ~,1 = £ ~ S ~ 0 and
Cl = C1 (~) > 0 such that 

~
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Choose h4 = ~.4 (~ 1 ~ C1, E (0, ~.1 ] so that

Then, fixing

for 0  ~,  ~,4, by (4.3), we have

We shall present a convergence result of uY to u° as / 2014~ 0.
For this purpose, we first extend uY on 03A903B3 into Q by

We denote the relaxed limit supremum of u Y at x E Q by

Notice that v is upper semicontinuous in Q, and that v (x ) ~  M f for
x ~ 03A9.

LEMMA 4.2. - For x E Q and p E D+v (x), we have

Remark. - This assertion is slightly weaker than that of the definition
of viscosity subsolutions of (4.1) in Q since the supremum in the above
is taken over A (x) in place of Ao (x) .

Proof - Because of stability of viscosity subsolutions, it suffices to

prove that E C1 satisfies that v(x) = 03C6(x) for x E ~03A9 and that v  03C6
in Q , then we have
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Suppose that this inequality fails; there are e > 0 and a E A (x) such that

We select yk e (0, ro] and xk E Q Yk such that

Let Yk = dist (xk , SZ ~ ) > yk . We note that Yk --~ 0 as k 2014~ oo. Thus,
we may suppose that A (x ) C A(Toxk). Set Xk(.) = X ( ~ ; xk , a ) for

simplicity. By Proposition 3.7, we can find to > 0 (independent of k) such
that

For large k, we may also suppose

Furthermore, we can take smaller to > 0 if necessary to get

Multiplying (4.5) by e-t, we take the integration over (0, to) to get
tn

Hence, for a fixed k, we have
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By the DPP (4.2) for uYk with s = to, we have

Since we may suppose that Xk (to) converges to a point .z E Q as k --~ o0
(by taking a subsequence if necessary), taking the lim sup (as k -~ oo) in
the above, we have

which is a contradiction. D

Now we state our convergence result.

THEOREM 4.3. - For any s > 0, there is y (E) > 0 such that if 0  r 
Y (~)~ then

Proof - In view of Lemma 4.2, by the comparison result in [5] (or [6]),
we obtain that

We remark that although we used a slightly different A (x ) (for x E 
from that of Lemma 4.2 to construct "test functions" in [5], we can
construct test functions having the same properties as in [5] by using
A (x ) in Lemma 4.2.

Since 0 ~ ur - u° holds in Qr for any r > 0, (4.7) implies (4.6).
Indeed, otherwise, there exists eo > 0, rk > 0 with limk~~ rk = 0, and
xk E Q rk with xk = z for some z E Q such that

Taking the relaxed limit supremum in the above as k -~ oo, we get a
contradiction to (4.7). D

5. MAIN RESULT

We shall write u for the value function u° of the SC problem for S2:
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DEFINITION. - For s > 0, we call a E A an e-optimal control of the
SC problem for S2 at x E S2 if a E .,40 (x) and

We notice that the first inequality always holds if a E Ao (x) .
Our main result is as follows:

THEOREM 5.1. - Assume that (A 1 ), (A2) and (A3) hold. Let u E
C(Q, R) be the value function of the SC problem for Q, and E > 0. Then,
there exist a constant i E (0, to], and a mapping x E S2 ~ a~ (x) E A
such that if for any x E S2 we set

where

then a£ is an ~-optimal control of the SC problem for Q at x.

Proof of Theorem S.l. -
Step 1: Construction of ~ and choice of i .
First of all, by Theorem 4.2, we can choose yl E (0, ro] so that

In what follows, we always fix ~ = À(y) := y2 / e.
For 03BB = E (0, yl /s], we define

For any x E Q, we choose xx E Q y so that = + |x -
x03BB|2/(203BB). Then, by Lemma 3.5, there is 03BB1 E (0, such that
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Taking smaller ~,1 > 0, the choice of which depends only on the modulus
of continuity of u, we may suppose that

From the definition, it is easy to see that

Thus, setting Mi := 2M f, by Lemma 3.6 together with Proposition 2.2,
we find h3 E (0, such that if h e (0, ~,3], x E E D u~ (x)
and a E A(Tox), then we have

Furthermore, by Lemma 4.1, we find h4 E (0, ~,3] such that if ~, E (0, ~.4],
x E Q and p E D then

In what follows, we fix r := y3 = (~~,,)3/2 = 
We claim that if

for a E A, x E Q and p E and if X (t) := X (t; x, a) E Q for
0  t  i , then we have

To prove this claim, we first observe that

Thus, we may easily have
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where do := yll y E ~2}.
Taking smaller to if necessary, we may suppose that

Moreover, we have

For the sake of simplicity, we shall use the symbol Co to denote various
positive constants depending only on Mg, M f and do.

Since Co and ~, ~ p (t) ~  Co for p E and pet) E

by (2.1), (5.9) implies that

Hence, by noting Lemma 2.4(1), Proposition 2.3 together with (5.6)
yields that

By the above inequality with (5.7) and (5.8), we see that

Since we may suppose that 0  y ~ 1 / ( l6Co) ~, recalling i =
multiplying the above inequality by e-t and then, integrating the

resulting inequality over (0, r), in view of Lemma 2.4(2), we get (5.6).
Next, because of the choice of i, we may suppose that

We now fix ~ = ~,4. Thus, y = ~4~ and i = (a,4E)3/2.
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We shall define the mapping âB : S2 --~ A in the following manner:

Step 2: Verification.
In view of (5.4) and (5.5), we observe that if x E Q and p E D u ~ (x ) ,

then we have

Furthermore, (5.10) and Proposition 3.7 yield that

Now we shall verify that as E A defined in Theorem 5.1 satisfies our
assertions.

Recall that xo = x, to = 0, Xk, and = 

for t E [ki, (k + 1 ) i ) (k = 0, 1, 2, ... ). Due to (5 .12), it is obvious to see
that as E Ao(x).
By (5.11 ) with xk for k > 0, our claim in Step 1 yields that

Multiplying the above inequality by and then, taking the summation
over k = 0, 1, 2, ... , from the definition of as , we have

Let xx E ,Q y satisfiy that + x~,~2/(2~,). Then,
by (5.2), we have
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Hence, by (5.1 ) and (5.3), we have

This together with (5.13) yields that

APPENDIX A

In order to prove Proposition 3.3, we will need the following lemmas:
Let P C and define

Let p E K.

LEMMA A.1. - We have

Proof - For p E K, we set p = ~=~ where

Fix y E We want to show that there is i E { 1, ... , n } such
that p + 1, which implies that

We may assume that

We shall prove that!/? + y - 1. From this chain of inequalities we
get
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Note that

and that

We compute that

and finish the proof. D

Let y > 0 and z E For simplicity, we set

We remark that N (z) is closed.
We also define

LEMMA A.2. - N(z) = co NT (z).

Proof - We first prove that

Note that N (z ) is a convex set.
Let p E NT (z) n B y the definition of Qy, we have
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Namely,

Thus, ifye Qy , then

and hence,

Thus we see that p E N(z) and moreover that co NT (z) C N (z) .
Next we prove that

We argue by contradiction. We assume for notational simplicity that
z = 0. Suppose that there were a point p E n N(0) such that

p fj. co NT (0). 
_

Choose a convex conic neighborhood V of co NT (0) so that p fj. V. By
the Hahn-Banach theorem, there is a vector n E such that

According to the definition of NT (o), we see that

Therefore, by continuity, there is q > 0 such that

We want to prove that for t 

To see this, let q E B (tn, y ) . If q g V, then we have q E Q since

It remains to consider the case when q E V. Since (n, q ~  0, we have
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Hence,

Since 0 E ~03A903B3 and q E intB(0, y ), we see that q E Q and that (A.1)
holds.

In view of (A.1 ), we see that if 0  t C y?, then

Hence, since p E N(O), we have

This yields that (n , p ~  0, which contradicts our choice of n. Q

We next show that the uniform exterior shpere condition holds for Qy .
LEMMA. A.3. - Assume that (A2) holds. Let z ~ ~03A903B3 and p E NT (z) n

Then, we have

Proof - Fix z E ~03A903B3 and p E NT(z) n We have y := z + yp E

By assumption (A2) there is x E RN such that

We claim that

and

Indeed, since

we see that x = z + (~ + )/)p. It is immediate to see that z e B(x, R + /).

Suppose for a moment that there were a such

that ~ z. Then B(~ y) G ~2. In particular, 1] := ~ + y (x - ~)/(~ +

y ) e ~. It follows that 1] = x + jR(~ - ~)/(~R + y) e B(x, 7?). Hence,

~ e B(~ R) n Q . Therefore, we have 1] = y. This is a contradiction. D
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Now we shall present a proof of Proposition 3.3.

Proof of Proposition 3.3. - Fix any 0  y  ro and x E a Qy .
According to Lemma A.3 we have

which implies that

Here and henceforth we write P = NT (x) n SN-1. We write K = co P as
well. Using Lemma A.I, for any p E K, we see that

It is well known that

Let a E A(Tox). By Proposition 3.1, we have

where 1] = g (x, By the definition of N (x ), we have

from which we get

This yields that

Indeed, for p = ~=1 with ~,i > 0, qi E P satisfying = 1, we
have
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and hence,

which ensures that (A.2) holds. Thus we see that if v E N (x) n 
then v = tp for some p e K and t > 0 satisfying p ~ > ~/2, and

This completes the proof. D

REFERENCES

[1] Bardi M., Capuzzo Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations, Birkhäuser, 1997.

[2] Barles G., Solutions de Viscosité des Equations de Hamilton-Jacobi, Springer, 1994.
[3] Brezis H., Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans

les Espaces de Hilbert, North Holland, Amsterdam, 1973.
[4] Clarke F.H., Ledyaev Y.S., Sontag E.D., Subbotin A.I., Asymptotic controllability

implies feedback stabilization, IEEE Trans. Automat. Control 42 (1997) 1394-
1407.

[5] Ishii H., Koike S., A new formulation of state constraint problems for first order
PDE’s, SIAM J. Control Optim. 36 (1996) 554-571.

[6] Koike S., On the state constraint problem for differential games, Indiana Univ. Math.
J. 44 (1995) 467-487.

[7] Loreti P., Tessitore M.E., Approximation and regularity results on constrained

viscosity solution of Hamilton-Jacobi-Bellman equations, J. Math. Systems
Estimation Control 4 (1994) 467-483.


