Travelling fronts for multidimensional nonlinear transport equations
Annales de l'I.H.P. Analyse non linéaire, Volume 17 (2000) no. 4, pp. 523-550.
@article{AIHPC_2000__17_4_523_0,
     author = {Schwetlick, Hartmut R.},
     title = {Travelling fronts for multidimensional nonlinear transport equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {523--550},
     publisher = {Gauthier-Villars},
     volume = {17},
     number = {4},
     year = {2000},
     mrnumber = {1782743},
     zbl = {0965.45012},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_2000__17_4_523_0/}
}
TY  - JOUR
AU  - Schwetlick, Hartmut R.
TI  - Travelling fronts for multidimensional nonlinear transport equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2000
SP  - 523
EP  - 550
VL  - 17
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPC_2000__17_4_523_0/
LA  - en
ID  - AIHPC_2000__17_4_523_0
ER  - 
%0 Journal Article
%A Schwetlick, Hartmut R.
%T Travelling fronts for multidimensional nonlinear transport equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2000
%P 523-550
%V 17
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPC_2000__17_4_523_0/
%G en
%F AIHPC_2000__17_4_523_0
Schwetlick, Hartmut R. Travelling fronts for multidimensional nonlinear transport equations. Annales de l'I.H.P. Analyse non linéaire, Volume 17 (2000) no. 4, pp. 523-550. http://archive.numdam.org/item/AIHPC_2000__17_4_523_0/

[1] Aronson D.G., The asymptotic speed of propagation of a simple epidemic, in: Fitzgibbon W.E., Walker H.F. (Eds.), Nonlinear Diffusion, Res. Notes Math., Vol. 14, Pitman, 1977, pp. 1-23. | MR | Zbl

[2] Aronson D.G., Weinberger H.F., Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in: Goldstein J. (Ed.), Partial Differential Equations and Related Topics, Lect. Notes Math., Vol. 446, Springer, 1975, pp. 5- 49. | MR | Zbl

[3] Aronson D.G., Weinberger H.F., Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. 30 (1978) 33-76. | MR | Zbl

[4] Berestycki H., Larrouturou B., A semilinear elliptic equation in a strip arising in a two-dimensional flame propagation model, J. Reine Angew. Math. 396 (1989) 14-40. | MR | Zbl

[5] Berestycki H., Nirenberg L., Travelling fronts in cylinders, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 9 (5) (1992) 497-572. | Numdam | MR | Zbl

[6] Diekmann O., Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Differential Equations 33 (1979) 58-73. | MR | Zbl

[7] Fisher R.A., The advance of advantageous genes, Ann. Eugenics 7 (1937) 355-369. | JFM

[8] Golse F., Lions P.-L., Perthame B., Sentis R., Regularity of the moments of the solution of a transport equation, J. Functional Analysis 79 (1) (1988) 110-125. | MR | Zbl

[9] Hadeler K.P., Travelling fronts for correlated random walks, Can. Appl. Math. Q. 2 (1) (1994) 27-43. | MR | Zbl

[10] Hadeler K.P., Reaction transport systems in biological modelling, in: Mathematics Inspired by Biology, Lect. Notes Math., Vol. 1714, Springer, 1999. | MR | Zbl

[11] Kolmogorov A.N., Petrovsky I.G., Piscounov N.S., Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Ser. Int., Sect. A, Math. et Mecan. 1 (6) (1937) 1-25; English Transl. in: Pelcé R. (Ed.), Dynamics of Curved Fronts, Academic Press, 1988, p. 105-130. | Zbl

[12] Othmer H.G., Dunbar S.R., Alt W., Models of dispersal in biological systems, J. Math. Biol. 26 (3) (1988) 263-298. | MR | Zbl

[13] Schumacher K., Travelling-front solutions for integro-differential equations. I, J. Reine Angew. Math. 316 (1980) 54-70. | MR | Zbl

[14] Thieme H.R., Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math. 306 (1979) 94-121. | MR | Zbl

[15] Weinberger H.F., Asymptotic behavior of a model in population genetics, in: Chadam J.M. (Ed.), Nonlinear Partial Differential Equations and Applications, Lect. Notes Math., Vol. 648, Springer, 1978, pp. 47-96. | MR | Zbl

[16] Weinberger H.F., Long-time behavior of a class of biological models, SIAM J. Math. Anal. 13 (3) (1982) 353-396. | MR | Zbl