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ABSTRACT. - We consider the problem

where 1  p  (N + 2) / (N - 2)  q. We prove that if q is fixed and
we let p approach (N + 2) / (N - 2) from below, then this problem has
a large number of radial solutions. A similar fact takes place if we fix
p > N/ (N - 2) and then let q approach (N + 2) / (N - 2). If we fix q
and then let p be close enough to N/ (N - 2) then no solutions exist.
@ 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - On considere le probleme de trouver des solutions de
l’ equation elliptique

avec

ou 1  p  (N + 2) / (N - 2)  q. Si l’on fixe q et p augmente et tend
vers (N + 2) / (N - 2) alors il’ y a un grand nombre des solutions radials.



552 R. BAMON ET AL. / Ann. Inst. Henri Poincare 17 (2000) 551-581 1

On peut obtenir un resultat analogue si l’on fixe p > N/ (N - 2) et q
s’approche de (N + 2) / (N - 2). En plus, si l’on fixe q et l’on prend
p assez proche de A/y(~V - 2) alors il n’existe pas de solution. @ 2000
Editions scientifiques et médicales Elsevier SAS

1. INTRODUCTION

In this work we consider the problem of finding positive solutions of
the following semilinear elliptic equation in 

Here A denotes the Laplacian operator in N > 3. We also assume
that the powers p and q are respectively sub and supercritical, namely

A solution of ( 1.1 )-( 1.2) is usually called a ground state of ( 1.1 ). It is
natural to search for radially symmetric ground states u = of (1.1),
so that u (r) satisfies the ordinary differential equation

Here we have denoted u + = In the case of a nonlinearity
constituted by a pure power, namely p = q in (1.1), the role of the critical
exponent in the problem of existence of positive ground states is well
understood. If p  (N + 2) / (N - 2), no positive solutions exist, see [5],
while if p = (N + 2) / (N - 2) all positive solutions are necessarily
radial around some point, see [6]. At this exponent, as well as for p >
(N + 2) / (N - 2), radial ground states are constituted by a one-parameter
family of functions. More precisely, for every a > 0, the solution u (r) of
the initial value problem (1.4) with p = q, u’ (0) = 0, u (0) = a > 0 is a
ground state.



553R. BAMON ET AL. / Ann. Inst. Henri Poincare 17 (2000) 551-581 1

We also notice that in case (1.3), it follows from a result in [4] that
all solutions of ( 1.1 )-( 1.2) which decay at a sufficiently fast rate are
necessarily radial around some point; this is however not known for all
ground states.
A question raised by W.-M. Ni is the following: Are there radial ground

states of ( 1.1 )-( 1.2) under the restriction (1.3)? Given the completely
different pictures exhibited by purely subcritical and purely supercritical
nonlinearities, an answer is not obvious. An interesting example was
discovered by Lin and Ni in [10]. If p and q satisfy (1.3) and additionally
q = 2 p - 1, then there is an explicit solution of the form u (r) = A (B +
r 2 ) -1 / ( p-1 ) ~ where A and B are positive constants depending on p and
N. The question of existence of ground states in the general range (1.3)
has remained however widely open.

In order to state our main results concerning this question, we need
some definitions. A positive solution u (r) of (1.4) in (0, oo) is said to
have slow decay if

for some positive constant A. On the other hand, u(r) is said to have fast
decay if

Thus u (r) is said to be a radial ground state of ( 1.1 ) if it is finite up
to r = 0 with u’ (o) = 0. We call u (r) a radial singular ground state if
instead u (r) -~ as r - 0+. It can be shown that these are indeed
all possible behaviors of a positive solution of ( 1.4). We remark that in
this language, in the case of a pure power p = q, ground states have slow
decay in the supercritical case, while they have fast decay at the critical
exponent. Also, Lin and Ni’s example is a ground state of slow decay.
THEOREM 1.1. - (a) Let q > (N + 2) / (N - 2) be fixed. Then, given

any integer k > l, there exists a number pk  (N + 2) / (N - 2) such that
if pk  p  (N -~ 2) / (N - 2), then ( 1.1 ) has at least k radial ground
states with fast decay.

(b) Let N/ (N - 2)  p  (N + 2) / (N - 2) be fixed. Then, given any
integer k > l, there exists a number qk > (N + 2) / (N - 2) such that if
(N + 2) / (N - 2)  q  qk, then ( 1.1 ) has at least k radial ground states
with fast decay.

A nonexistence counterpart of the above result is the following.
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THEOREM 1.2. - Let q > (N + 2)/(N - 2) be fixed. Then there is a
number p > N/(N - 2) such that if 1  p  p then there are neither
radial ground states nor radial singular ground states of ( 1.1 ).
We observe that this nonexistence result is optimal, in the sense

that for q = 2p - 1 there are ground states, and (N + 2)/(N - 2) _
2N/(N - 2) - 1.
As for existence of singular ground states or slow-decay ground states,

we have the following result.

THEOREM 1.3. - (a) Given q > (N + 2)/(N - 2), there exists an in-
creasing sequence of numbers pl  p2  ~ ~ ~ with pk t (N + 2)/(N - 2)
such that if p = pk then there is a radial singular ground state of ( 1.1 ),
with either slow or fast decay.

(b) Given N/(N - 2)  p  (N + 2)/(N - 2), there exists a decreas-
ing sequence of numbers ql > qz > ~ ~ ~ with qk ~, (N + 2)/(N - 2) such
that if q = qk then there is either a slow decay ground state or a slow
decay singular solution.

The proof of Theorem 1.1 is based on the following key fact.

PROPOSITION 1.4. -Assume that Eq. (1.4) has a solution uo(r)
defined and positive on an interval (0, Ro) and a solution uoo(r) defined
and positive on an interval (Roo, oo). Assume also that Roo, Ro, uo fl u~
and that uo - u~ has at least 2k + 1 zeroes in Ro) for some k ~ 1.
Then there exist at least k - 1 radial ground states with fast decay of
(l.l).

For instance the proof of part (a) of Theorem 1.1 is thus reduced to

showing that for each number k the assumptions of this result indeed
hold if we fix q supercritical and then let p be close enough from below
to the critical exponent. Similarly for part (b).
The proof of this proposition, as well as those of the other results stated

above, is largely based on a rather delicate phase-space analysis of a
three dimensional autonomous first order system equivalent to Eq. (1.4),
obtained after the so-called Emden-Fowler transformations. Loosely
speaking, a ground state with fast decay will correspond to a heteroclinic
orbit connecting two equilibria of the system with respectively a two-
dimensional unstable manifold and a two-dimensional stable manifold.
The assumptions of Proposition 1.1 amount to the presence of two

trajectories lying respectively on each of these surfaces, which wind
around each other at least k times. After a topological analysis, we
show that this winding inherits at least k - 1 distinct trajectories lying
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simultaneously on the two surfaces, so that k - 1 heteroclinic orbits are
present..

It should be remarked that the presence of slow-decay solutions, like
that of Lin and Ni’s example, is harder to be detected (and expected to
be non-generic) due to the fact that they correspond to a heteroclinic
orbit lying simultaneously on the two-dimensional unstable manifold
above mentioned and the stable manifold of a third equilibrium point
which is only one-dimensional. In fact, if such a solution exists, it is

automatically unique. A similar fact holds for a singular ground state.
This "nongenericity" makes us suspect that typically no much more than
the assertion of Theorem 1.3 can be said concerning existence of singular
or slow decay ground states. In this sense, Lin and Ni’s example of a
slow ground state may well represent just a big coincidence, though we
do not know if this is the case. Instead the presence of fast decay ground
states is topologically "robust". It should be mentioned that the setting
of the heteroclinic orbits here detected, seems in principle suitable for
the application of Conley index theory, see [ 11 ], since the sum of the
dimensions of the stable and unstable manifolds of the equilibria is larger
than the dimension of the space. However the multiplicity assertion seems
hard to be obtained without the special topological analysis carried out
here, not to mention the presence of a trivial heteroclinic representing the
solution u - 0.

Proposition 1.1 is a somewhat surprising type of "topological shoot-
ing", which seems applicable to a much broader class of nonlinearities,
but we will not ellaborate about this point here.
To be noticed is the fact that fast-decay ground states have finite energy,

so that one may expect them to be in principle workable via variational
methods. On the other hand, this seems hard, at least through usual min-
max characterizations. A point to be made is that a geometric approach
like that devised in this paper may reveal in fairly natural ways a lot of
the underlying structure of the problem. In this line we may also mention
for instance the works [8,9] and [ 1 ], where dynamical systems tools have
been used in the study of related equations.
The rest of this paper is organized as follows: In Section 2 we introduce

the Emden-Fowler transformations and the equivalent first order system.
We analyze its equilibria and describe locally the phase space near these
points. In Section 3 we prove Proposition 1.1 via topological arguments,
while in Section 4 we establish as a corollary the validity of Theorem 1.1.
In Section 5 we prove the nonexistence result Theorem 1.2, and finally
we prove Theorem 1.3 in Section 7.



556 R. BAMON ET AL. / Ann. Inst. Henri Poincare 17 (2000) 551-581 1

2. THE FIRST ORDER SYSTEM

We consider the classical Emden-Fowler transformation

which transforms Eq. (1.4) into the equivalent problem

where

Standard calculations show that finding a positive radial ground state
of (1.1), namely a solution of (1.4)-( 1.5) is equivalent to finding a positive
solution x (t) in R of (2.2) such that

Introducing the variables y = x’ and z = Eq. (2.2) becomes
equivalent to the autonomous first order system

Our task is therefore equivalent to finding a solution x(t) = (x(t), y(t),
z(t)) of this system, with z(t) > 0, such that x(t) ~ 0 as t -~ while

(x (t), y (t)) -~ (0, 0) as t -~ +oo.
We observe that the plane z = 0 is invariant under the flow associated

to system (2.3). This plane contains the two singularities of the flow
Oo = (0, 0, 0) and Po = (~ 1 / (q -1 ) , 0,0). For the flow restricted to this
plane, Oo is a hyperbolic saddle. Po is a hyperbolic attractor. They are
connected by a heteroclinic orbit, precisely a branch of the unstable
manifold of Oo restricted to z = 0. This orbit is transversal to x = 0, see
Fig. 1. This phase plane analysis (corresponding to the case of a single
power) is actually well known. See for instance the appendix in [9] and
its references.
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Let us now consider the behavior of the entire flow on the half-space
z ~ 0 near these singularities. Linearizing the flow around Oo one obtains
one stable eigenvalue 2/ (q - 1) - (N - 2)  0 with associated eigenvec-
tor (1, 2/ (q - 1) - (N - 2), 0) and two unstable eigenvalues 2/ (q - 1)
and y = 2 (q - p) / (q - 1) with associated eigenvectors (1, 2/ (q - 1 ) , 0)
and (0, 0, 1 ) . Thus, from standard invariant manifold theory, see for in-
stance [7], Oo has a two dimensional unstable manifold W~‘ ( Oo), consti-
tuted by all trajectories approaching Oo as t ~ -oo, whose tangent plane
is spanned by the two unstable eigenvectors. Moreover, it coincides with
this plane for x  0. W u ( Oo) contains the entire z-axis as well as the het-
eroclinic orbit on z = 0 connecting Oo and Po. It is also transversal to the
planes z = 0 and x = 0. Now, linearizing around the singularity Po we
obtain the unstable eigenvalue y with associated eigenvector
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We also have the two stable eigenvalues

with eigenfunctions contained in the plane z = 0. The unstable manifold
of Po for z > 0, Wu (Po), is thus one-dimensional, and constituted by a
single orbit, see Fig. 2.

In order to analyze the behavior of trajectories near z = +00 it is
convenient to introduce also the additional transformation,
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which makes the system equivalent to

with

This transformation corresponds to using the exponent p instead of q
in the Emden-Fowler transformation (2.1 ), which is expected to reflect
better the behavior of a ground state at infinity. In fact, the effect of this
transformation is to "blow-up" the "singularity" (0,0, oo) into the plane
z = 0. These new coordinates extend up to z = 0, which is invariant
under the flow associated to system (2.5). The singularities of this new
flow are the points Ooo = (0,0,0) and (~B1/(p-1), 0, 0). For the flow
restricted to this plane, O~ is a hyperbolic saddle and Poo is a hyperbolic
repulsor. They are connected by a heteroclinic orbit which corresponds
to a branch of the stable manifold of O~ restricted to z = 0, see Fig. 1.

As for the entire flow on z > 0 near these singularities, we obtain that
O~ has associated two stable eigenvalues 2/ (p - 1 ) - (N - 2)  0 and

-y = -2(q - /?)/(/? 2014 1) with corresponding eigenvectors.
(1, 2/(p - 1) - (N - 2), 0) and (0, 0, 1), as well as one unstable

eigenvalue 2/ (p - 1) with eigenvector (1, 2/ (p - 1 ) , 0) . Thus, O~ has
a two-dimensional stable manifold WS ( O~) with tangent plane spanned
by the two stable eigenvectors and it coincides with this plane for Jc  0.

contains the entire z-axis as well as the heteroclinic orbit

connecting O~ and Poo. It is transversal to both planes z = 0 and i = 0.
Similarly, Poo has the stable eigenvalue -y with associated eigenvector



560 R. BAMON ET AL. / Ann. Inst. Henri Poincare 17 (2000) 551-581 1

Poo has also the two unstable eigenvalues

with eigenfunctions contained in the plane z = 0. The stable manifold
of is thus one dimensional, and constituted (for .z > 0)
by a single orbit. The following result describes the asymptotic behavior
of a trajectory of system (2.3) whose x-coordinate remains positive as
t -~ -oo, and that of a trajectory of (2.5) whose x-coordinate remains
positive as t ~ 

LEMMA x(t) _ be a solution of system
(2.3). X(t) _ (x(t), y(t), a solution of (2.5).

(a) Assume that x(t) > 0 for all -~  t  to. Then the orbit of x is
either contained in W u ( Do) or it coincides with W u ( Po).

(b) Assume that x (t) > 0 for all to  t  ~. Then the orbit of X is
either contained in W S ( O~ ) or it coincides with W S (Poo).

Proo, f : - x (t) satisfies the differential equation,

so that u (r) = satisfies

Assume u (r) is unbounded as r - 0. Then there exists a decreasing
sequence 8n - 0 with u’ (~n )  0. From the above equation we get then
that u’ (r)  0 for all r > 0. Also, integrating from ~n to r we get

so that

for all small r > 0. Hence
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Assume first that there is a number 8 > 0 with x (t) > ~ as t 2014~ -oo.

Stand now at any sequence tn -+ -00 then xn (t) = x(t + tn) is uniformly
bounded above, and below away from zero and satisfies

A standard compactness argument yields that xn has a subsequence,
uniformly convergent over compacts to a solution positive and bounded
above and below away from zero of

But, phase plane analysis shows that the only solution of this equation
with that property is the constant x = Since the sequence tn
was arbitrary, it follows that x(t) - Po as t - -oo, in other words
this trajectory lies in Wu (Po). Assume now that there is a sequence

tn -+ -00 such that x (tn ) - 0 but that x (t ) y4 0 as t -+ -00. Then
we may find a second sequence tn --~ - oo such that 0  !  
~ 1 ~ ~q -1 ) / 2 and x’ (tn ) ~ 0. Then, analogously to the previous case, we
have that a subsequence of x (t + which converges uniformly over

compacts to a bounded, positive solution x of (2.6) such that x’ (o)  0,
 ~81 ~ ~q -1 ~ / 2. However, phase plane analysis again yields that no

such solution exists. Hence x (t) -~ 0 as t - -oo which in turn yields
also x’ (t) -~ 0 using the second order equation, so that x(t) -~ Oo as
t -+ -00. We conclude that this trajectory then lies in W(0o), and the

proof of the first assertion of the lemma is complete.
The proof of the second assertion is very similar. We claim that there is

a number a > 0 with u’ (r) C 0 for all r > a. Indeed, assume the oppoite,
namely that there is a sequence rn 2014~ +00 with u’ (rn ) > 0. Then

Hence

which inplies that, on the one hand, u is nondecreasing, on the other
that the left integral is finite. But this implies that u = 0, a contradiction.
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Assume then that for r > a u is nonincreasing. Then

It follows that

From here it easily follows that u(r) x which implies that
x remains bounded as t -~ +00. After this, the proof of the second
assertion of the lemma follows in exact analogy as that of the first, now
using the fact that x satisfies the equation

This finishes the proof. D

The following intuitively clear fact will be important for further
analysis.

LEMMA 2.2. - The unstable manifold of Po, is contained

in the closure of the unstable manifold of Oo, Wu (Po). Similarly, the

stable manifold of is contained in the closure of the stable
manifold of O~, WS (Poo).

For the proof of this result, we refer to the remark after the proof of
Lemma 5 .1

Let us define the manifolds and as the intersection

of and with z > 0, expressed in terms of the original
coordinates x, y, z, namely

Let us observe then that a (nontrivial) trajectory (x (t), y (t), .~ (t)) which
lies in WU ( 00) and simultaneously in WS ( O~) corresponds to a radial
ground state of (1.1), in the sense that
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solves (1.4)-(1.5). In fact this is a fast decay ground state. If this

trajectory lies in W(0o) n W(Poo). then this is a slow-decay ground
state, in the sense of (1.6). These decay rates are easy to confirm via
linearization around O~ and Poo. In fact, the reciprocal is also true. Any
ground state needs to be of one of the types just described in terms of the
x transformation.
We should remark that a ground state needs to remain positive if not

identically zero. A trajectory which intersects the x = 0 plane from the
x > 0 side, never crosses it back (observe that on x  0 the system is just
linear. )

Finally, we observe that a singular ground state corresponds precisely
to a trajectory lying in or We

observe that there is at most one of such trajectories, since is

one-dimensional, and the system is not invariant in z-translations.

3. THE PROOF OF PROPOSITION 1.1

We shall kepp here the notation introduced in the previous section.
What we have to show is that if the assumption of Proposition 1.1 is

accomplished by certain number k, then there exist at least k - 1 distinct
trajectories in 

Let uo(r) and uoo(r) be solutions of (1.4) as in the statement of the

proposition. We define xi (t ) = i = 0, oo and likewise

yi (t) = xi (t), z(t) = eYt, according to the transformation (2.4). Let us set

We will also denote ti = In Roo, t2 = In Ro. Since, by assumption, xo (t) >
0 for all -~  t  t2, it follows from Lemma 2.1 that the orbit of xo
lies in W ~‘ ( Oo) or it coincides with a branch of (the latter is
the case of uo a singular solution). Similarly, x~ is a trajectory lying
either in or in The assumption of the proposition is
that xo - Xoo has at least 2k ~- 1 simple zeros in the interval (tl , t2),
which amounts to the fact that the trajectories xo (t ) and xoo(t) wind
around each other at least k times. We will establish this below, with a

precise definition. Since, as we saw in the previous section, lies

in the closure of and W(PoJ lies in the closure of 
it follows that without loss of generality we may assume that xo lies in

and x~ lies in 
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Moreover, if we assume that only a finite number of trajectories
lie simultaneously in and in (otherwise an infinite
number of ground states with fast decay automatically exist), then slightly
perturbing xi (t) to neighboring trajectories in Wu (Oo), respectively in
WS ( O~), we may also assume without loss of generality that these
trajectories do not lie simultaneusly in the two manifolds.
We observe that the z-axis separates the manifold W~‘ ( Oo) into two

components invariant under the flow, one of them a half-plane contained
in x  0, the other a surface W~ ( Oo), which we define so that it contains
the z-axis. Observe that W+ ( 00) is not necessarily contained in x > 0.
Let us observe that the trajectory xo splits W+ ( Oo) into two components.
Let us call Ho the closure of the component which contains the z-axis.

Let us denote U (zo) = Ho n {z = ,zo } . Then U (zo) is a C ~ curve without
self-intersections, whose endpoints are (0, 0, zo) and the point of the
trajectory xo in the plane {z = zo}.

Similarly, we see that the z-axis separates the manifold 
into two components invariant under the flow, one of them a half-plane
contained in x  0, the other a surface W(Ooo), which we define so
that it contains the z-axis. Now, the trajectory x~ splits W~_((9oo) into
two components. Let us call Hoo the closure of the component which
contains the z-axis. We denote S(zo) = H~ n {z = .zo } .
Our goal is to prove that for certain zo the curves U (zo) and S (zo)

intersect at least at k - 1 points. Observe that these intersections will
correspond to k - 1 distinct trajectories lying simultaneously in 
and WU ( 00), hence to k - 1 radial ground states with fast decay of (1.1).

In order to do this, we need some preliminaries. We can lift a planar
curve c~ (s), s E [o, 1], {(xo, yo)L to a curve 3 (s) = (e (s), pes)) in
the polar coordinates plane via the relation

We define the winding number of o~ around (xo, yo) as the number

where [.] denotes integral part.
Next we consider two disjoint curves yi and Y2 in the 3-dimensional

space which can be parametrized by the z-coordinate in the form
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We define the linking number of yl , y2 in [.z 1, z2] to be the integer
(~, ~))~ where cr (z) _ (xl (z) - x2(z)~ y (z) - y2(z))~ z E .z2].

This number is obviously invariant under homotopies which preserve
endpoints of the curves, keep the curves disjoint and preserve their z-
coordinates.

Let 03C6i (z) be a parametrization of the trajectory xi, i = 0, ~, via the z-
coordinate, namely = Fix numbers z 1 and z2 and let

crl (s) and cr2 (s ) , s E [0, 1], be one-to-one parametrizations respectively
of U (.z 1 ) and U (z2), such that crl (o) _ ~1 (1) _ (0, 0, z 1 ) and

~2(~) _ (~~ ~~ Z2) and (3’2(1) _ 
See Fig. 3 for a description of the linking situation we are concerned

with.

The result of Proposition l.l is a direct consequence of the following
three lemmas.

LEMMA 3.1. - There exists a number z 1 > 0 such that for any 0 
z 1  .Z 1 and all z2 > z 1 the winding number of curve 03C32, contained in the

plane .z = z2, around the point equals m - 1 or
m, where m is the linking number of the curves ~o and in [.z 1, z2].

LEMMA 3.2. - If k is the number given by the assumption of Proposi-
tion 1. l, and 0  z 1  z2, then the linking number of the curves ~o and

in [z 1, z2], is at least k.

LEMMA 3.3. - If z2 is chosen sufficiently large, then the curves U (z2)
and S (z 2 ) intersect at least W (~2 , Pz2 ) times.
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We will devote the rest of this section to the proof of these results.

Proof of Lemma 3. l. - Let us observe that there is a unique value of z
for which crosses the plane x = 0. We choose z to be this value,
so that ~ (x > 0} for all z > 

Let s be a small fixed positive number. Let us define ~o(z) to be the
following curve

Next we check that if s is chosen small enough then CPo and CPo are
homotopic inside the region

leaving endpoints fixed and the z-coordinate invariant. In fact, let us

consider the surface Ho defined earlier in this section, constituted by the
component of W+(Oo) which contains the z-axis in its closure. Then the
set

is the boundary of Ho, in manifold sense, see Fig. 3. We have that if ~
is sufficiently small, then ~o can be homotopically deformed to a curve
~o which lies in Ho in such a way that that the deformation leaves the
z-coordinate unchanged and remains inside the region S.

Indeed, let t ) denote the solution of (2.3) with 0) = x. Let us
define the curve ~o in Ho as

If 8 is small, the distance between ~o (z) and ~o (z) is uniformly small for
z E [,z 1, z2] . Fixing such an ~, a homotopy between the two curves with
the desired properties is readily constructed. We check next that qlo and ~o
are homotopic inside Ho, with invariant z-coordinate. It is straightforward
to check that there is a homeomorphism F : Ho - [o, 1 ] x .z2] which
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leaves the z-coordinate invariant and satisfies the following properties

On the other hand, it can also be checked that the curves and

[.z 1, z 2 ] are homotopic inside the rectangle [o, 1 ] x [Zl, z 2 ] ,
with a homotopy G which leaves the endpoints of these curves as well
as their z-coordinates invariant. F-10G is a homotopy in Ho with the
desired properties. See Fig. 4.

It follows that the linking number of CPo and equals that of 0 and

Let us write

We define as
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Then and are homotopic inside

leaving endpoints fixed and z-coordinate invariant. Indeed, if we choose
8 and £ sufficiently small, we obtain that and z2 ] )
are contained in the set

and z2]) n R = Q~. It is easily checked that a homotopy in R with
the desired properties can be built up.

Hence the linking number of the curves ~o, in [z l , z2] equals that
of CPo and 
We claim that the winding number of 0’2 around the point 

measured in the plane z = .z2. is greater than or equal to m - 1 and less
than or equal to m, where m is the linking number of ~o and We have
that

Let us call ~ (z) the x - y component of c~o (,z) - Let us

write ~ (z ) = ( p (z ) We observe that W (c~ , (0, 0))
corresponds precisely to the linking number of ~o and 

We claim that
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and

We check first (3.2). We recall that crl is a parametrization of U (.z 1 ) =

W+ ( Oo) n { z = z 1 } . Because of the form of vector field defining system
(2.3), W~ ( Oo) cannot intersect the set {x = 0, y > 0} . On the other
hand, WU (00) splits into a half-plane H contained in {x  0, y  0}
and W+ ( Oo) . From these facts it follows that U (zi) does not intersect

{x  0, y > 0} and hence (3.2) holds true. Now, since between z + a and
z2 - ~, the curve ~ (z) is a line segment, inequality (3.3) readily follows.
From (3.2), (3.3) and (3.1 ) it follows that

where

But n is precisely the winding number we want to estimate and

W (~, (0,0)) = m. Thus the claim follows, and hence the lemma. a

Proof of Lemma 3. 2. - We will show that the linking number of ~o
and in [z 1, z2] where exactly 2k + 1 zeros of xo - Xoo exist in the
interval [t_, t+] and they are in the interior of the interval, is at least k.
Here zi,2.

Let h = xo - Xoo. Then h satisfies a second order equation of the form

and h has exactly 2k ~- 1 zeros in (t_ , t+). By definition of the linking
number, it equals the winding number around the origin of the curve
~ (z ) == (h, in [Zl, z2 ] . But this number is invariant under a
reparametrization of the curve or, it hence equals that of cr (t) = (h, h’) (t),
t E [t_ , t+ ] . Note that this curve does not touch the point (0, 0) since
h cannot have a double zero, hence the winding number (0,0))
is indeed well defined. Let us also observe that whenever h vanishes,
cr crosses transversally the line h = 0 in the clockwise direction. Let
t-  ti  t2  ...  t2k+l  t+ be the zeroes of h, and consider a lifting
(p (t), e (t)) of ~, so that _ (p(t) sin e (t), pet) cos9(t)). Assume
8 (t_ ) E (0, Then 8 (t~ ) for j = 1,..., 2k + 1. Since no more
zeros exist beyond t2k+1, it follows that (2k +  9 (t+)  (2k + 2)Jt .



570 R. BAMON ET AL. / Ann. Inst. Henri Poincare 17 (2000) 551-581 1

and hence

as desired. The proof if o (t_ ) E (vr, is similar. 0

Remark. - We observe from the above proof that the linking number
of CPo and ~~ is nondecreasing as a function of the interval where it is
measured, namely the linking number in [z 1, z2] is larger than or equal to
that in [z 1, ,z2] whenever [,z 1, .z2] C [z i , z2] ~

Proof of Lemma 3.3. - transformation of x~ via (2.4). We recall that
for z2 > 0, the section S(z2) is given by H~ n {z = z2~, which is a curve
with endpoints (0,0, z2) and logz2). We have that the orbit of
x~ lies in so that in coordinates (2.4), x(t) - 0 as t --~ +00.
Hence if x2 is sufficiently small, S(z2) is well approximated by the seg-
ment joining its endpoints. Now, the image of this segment via transfor-
mation (2.4) is a line segment joining (0,0, z2) and where
Z2 = :z2 (p-1)/(q-1). Thus, if Z2 is small enough, we also have that S(z2) is
well approximated by the segment joining its endpoints.

Let [0, 1] be a parametrization of S(z2) such that r~2 (o) _
(0,0, z2), r~2 ( 1 ) = --_ (x2, y2, z2) . Let us call q the vector in II~2
whose components are the x, y coordinates of r~2. Since S(z2) does
not have self-intersections, we may choose q to be one-to-one. 
s E [0,1), can be lifted to a curve ~ (s ) = (8~ (s ) , in the polar
coordinates plane, so that

Now, as we have mentioned, the z-axis separates W(0o) into two
components, one of them a half-plane contained in x  0, y  0 and
the other the surface we called W+ ( Oo) . Thus U(z2) does not intersect
this half-plane. We denote by I the parametrization of (x, y)-coordinates
of the line constituting the intersection of the half plane and z = z2, let us
say l (s ) = - (s, a s ) , s > 0, for some a > 0. We call 1 = (9l , pl ) its lifting
to polar coordinates around (x2, y2). Since r~ (o) = cr (o) = l (0+) _ (0,0),
then ~(0) = 03C3(0) = l (o) _ (Bo, po) .

Let us call m the integer m = W (a, (x2, y2)). Then there exist numbers
0 = so  si 1  ... 1 such that = 2j03C0 + eo. Now, if z2
is sufficiently large, we have that a- ( 1 ) E {x  0{ and we can conclude

2 (m + + 80 . Thus, if we set = 1, then sm  We
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will show that for each 1  j  m intersects the curve

+ 0).
Let us observe that since 1] is well approximated by the segment joining

(0,0) and (x2 , y2 ) , then

We also have that

Besides, pl (s) +00. Thus, the curve L j obtained by joining
the curves ij + 0) and l ~- (2 j n, 0) is contained in the set

L ~ does not have self-intersections, so that it separates the half-plane
p > 0 into two components, one of them containing the set {e  (2 j -

+ 90) and the other { 8 > (2 j + + Therefore, for all 1 

j  m , ~ (s~ , s~ + 1 ) intersects L j . Since (T does not intersect I, cr does

not intersect l ~- 0). Hence Sj+1) intersects ij + 0), and
the claim is thus proven, see Fig. 5. Next we see that these correspond to
distinct intersections n the original coordinates. Now, let a j E (s~ _1, Sj+1)
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be such that lies on the curve ~ + 0). We have that if ji ~ j2
then c~ (a~l ) ~ cr (a~2 ) . In fact, if otherwise, the curves ~ + 0)
and ~ + 0) would intersect, and then the curve r~ would self

intersect, and this does not happen. Thus, for all j, there is a b j such
tat + 0), so that cr (a~ ) = Since cr is one-to-

one, all points cr (a~ ) are distinct, and hence U (z2) and S(z2) intersect at
least at m - 1 points. This concludes the proof. 0

4. THE PROOF OF THEOREM 1.1

Let us consider first the situation described in Theorem 1.1. We fix

a number q with q > (N + 2) / (N - 2). In view of Proposition 1.1 it

is sufficient to establish that, given k > 1, there is a number pk 
(N + 2) / (N - 2) such that for pk  p  (N + 2) / (N - 2) there exist
solutions of (1.4) u and u2 with u positive in (0, R1) and U2 positive in
(R2, oo) with the property that u 1 - U2 is not identically zero and has at
least 2k ~- 1 zeros. To do this, we establish first the following fact.

LEMMA 4.1. - Assume p = (N + 2) / (N - 2) and q > p. Let (x (t),
yet), z (t)) be any trajectory in Wu (Oo) with z (t) > 0 and x (t) > 0 as
t -~ -oo. Then

(i) x(t) 
(ii) x(t) defined by transformation (2.4) is uniformly bounded and

remains away from zero as t -~ oo.

Proof. - Consider such a trajectory and let x (t) be defined by the
transformation (2.4), for this q and for p = (N + 2) / (N - 2). Then x
satisfies the second order equation

Assume that x vanishes at a first point t = T. Observe that x (t) =
Ce + o(e) as t - oo for some C > 0. Integrating Eq. (4.1) between -o~o
and T, after multiplying by x’ we obtain
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so that after integration by parts we obtain

and this is a contradiction, unless x = 0. This proves the first assertion.
For the second assertion, let us assume that there is a sequence tn -~ +00
so that x (tn ) 2014~ 0. Now one gets the identity

Letting n 2014~ oo we obtain that

hence x = 0, a contradiction. Observe that a similar identity also shows
that x is also uniformly bounded. D

Let x* (t) be the only trajectory of (2.3) with z-component eYt whose
orbit coincides with WS(Poo).

Consider also any (fixed) trajectory x(t) in which does

not coincide with x* (t) . Let x* (t) and x(t) be their respective first

coordinates in the transformation (2.4). We claim that x - x* has an
infinite number of zeros. In fact, let tn be any sequence with tn -~ +00.
Let us set xn (t) = x(tn + t). Then from the previous lemma, xn(t) is

uniformly bounded above, and below away from zero. xn satisfies the
equation

with 8n = e-ytl1 - 0. By a standard compactness argument, it follows

that, passing to a subsequence in 2014~ x, uniformly on compact intervals,
where Jc solves



574 R. BAMON ET AL. / Ann. Inst. Henri Poincare 17 (2000) 551-581 1

I is bounded above and below away from zero. Besides, since x and x*
do not coincide, and x* is the only trajectory in Wu (P (0) and x*(t + tn ) --~
R 1 / ( p-1 ) uniformly on compacts, then Jc is nonconstant. But the only solu-
tions positive and bounded away from zero of the above equation are pe-
riodic, and cross the constant an infinite number of times.

This proves the claim.

Let us consider an interval [t1, t2 ] where one sees 2k -~-1 zeros of x - 
For fixed q, we take a number p slightly smaller than (N + 2) / (N - 2).
Then in the "coordinates, remains as close as we wish on each

given compact interval of the z-coordinate to the trajectory S 1 if one

chooses p close enough to critical. Similarly, one can find a trajectory
in very close to x for all p near critical. Since the 2k + 1 zeros
of Jc 2014 xl are simple, the same will be true for those close-by trajectories,
in the interval (t1, t2) for p sufficiently close to critical. In this way, the
assumption of Proposition 1.1 do hold in the situation described in (a) of
Theorem 1.1 and the result hence follows. The proof of assertion (b) is
actually symmetric. It can be understood as basically a reflection of the
situation just described. We need the following analogue of Lemma 4.1.

LEMMA 4.2. - Assume q = (N + 2) / (N - 2) and N/ (N - 2)  p 
q. Let (x(t), y(t), z(t)) be any trajectory in with z(t) > 0 and
x (t) > 0 as t - +00. Then

(i) x (t) > 0 for all t > 0.
(ii) x(t) is uniformly bounded and remains away from zero as t --~

-00.

Proof. - x (t) satisfies the second order differential equation

Notice that ~B > 0 since p > N/ (N - 2). Assume that x vanishes at a last

point t = T. Observe that x(t) = Cedt + o(edt) as t --~ -oo for certain
numbers C > 0 and d > 0. Integrating Eq. (4.4) between T and oo, after

multiplying by x’, and then integrating by parts we now obtain

and this is a contradiction, unless x = 0. This proves (a). The proof of (b)
is analogous to the corresponding assertion in Lemma 4.1. D



575R. BAMON ET AL. / Ann. Inst. Henri Poincare 17 (2000) 551-581 1

After this result, the proof of part (b) of the theorem follows by a
similar perturbation analysis as that carried out in part (a), except that
now we consider t -~ - oo . This concludes the proof of Theorem 1.1.

5. THE PROOF OF THEOREM 1.2

In this section we will perform the proof of the nonexistence result
Theorem 1.2. Thus, we fix q > (N + 2)/(N - 2) and show that if p
is taken sufficiently close to N/ (N - 2), then no ground states of (1.1)
(singular or nonsingular) exist.
We consider the initial value problem

Let ua (r) be the unique solution of this initial value problem. Let us
denote by xa (t) and xa(t) their Emden-Fowler transformations, namely

Then xa (t) has associated a trajectory of system (2.3) in Wu (Oo), xa (t) =

(xa (t), Let us also consider the unique trajectory x* (t) with z-
component corresponding to the one-dimensional unstable manifold
of Po, Associated to this is then the (unique) singular solution of
(5.1 ) given by uoo(r) = where x* is the x-component
of x* .
We need the following result.

LEMMA 5.1. -

uniformly on compact intervals.

Proof. - We know that the tangent plane to the manifold W u ( O°) is
the plane which contains the z-axis and the vector (1, 2/ (q - 1 ) , 0) . By
Hartman and Grobman Theorem, see Theorem 1.1.3 in [3], we know that
the dynamics near Oo of the system is characterized by C°-conjugation
with that of the linear system
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whose unstable manifold of the origin is precisely the above mentioned
plane. Thus there is a unique orbit of the linear system, let us say

whose associated trajectory approximates that of But the initial

conditions (5.2) read in terms of this trajectory as

Hence a = a, and the two trajectories remain uniformly close in a
neighborhood of the origin independent of a. But as a - +00, this
trajectory gets closer and closer to the (invariant) plane z = 0, hence
to the heteroclinic orbit contained in z = 0 which connects Oo and Po.
In particular there are points of the trajectory of xa which get closer
and closer to Po as a - +00. Therefore, for large a, this trajectory
enters a neighborhood of Po where the dynamics of the system is well
described by its linear part. Let us recall that Po is a hyperbolic attractor
on the z = 0 plane, either a focus or a node, while it has one expanding
direction transversal to this plane, precisely the tangent line to the one-
dimensional unstable manifold of Po. Examination of the linear system
yields that an orbit not contained in the z = 0 plane which gets close to
Po, turns upwards, staying close to in an entire neighborhood of
Po. Since this neighborhood is independent of a, the conclusion is that in
a neighborhood of Po, the trajectory of xa gets uniformly close to Wu (Po)
as a - +00. Continuity in the initial conditions of the initial value

problem associated to the system implies then that given any compact
subset of the real line, large alpha implies xa stays uniformly close to x* .
This concludes the proof.

Remark. - The first part of Lemma 2.2 follows immediately from
this result. A proof symmetric to the one just carried out, but applied
to Eq. (2.5), shows that also is contained in the closure of

LEMMA 5.2. - Given N/ (N - 2) ~ p  (N + 2) / (N - 2) there is a
number a such that for all a  a there is a unique point ta with x (ta ) = 0.
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Proof. - We consider now directly problem (5.1)-(5.2). Let us set

ua (r) = Then ua satisfies

Since aY - 0 as a - 0, it follows by continuity of the solution of this
problem in a, that ua -~ uo uniformly over compacts, where u* is the
unique solution of the initial value problem

This solution vanishes exactly once at certain number r* > 0, with
u *’ (r * )  0 since p is subcritical. r* is bounded by some number
depending only on p. Hence for all a sufficiently small, the same will
happen at certain point ra .

Proof of Theorem 1.2. - Let us fix q supercritical, and consider first
the case p = N/ (N - 2). We claim that no solution of (5.1) positive in
the interval (0, oo) exists in this situation. In this case  = 0, hence the
equation satisfied in the" coordinates is

Let us observe that this solution satisfies that x (t) --~ 0 and x’ (t) - 0 as
t hence integrating the equation from -00 to t we obtain the
relation

We have that x(t) and x’ (t) are uniformly bounded. In fact, for instance
boundedness of x is equivalent to that of the function 
Integrating (5.1) we obtain that
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In particular u is decreasing, so that,

From here it easily follows that u(r)  and u’(r) C
Cr-(p+1)l(p-1) which imply that x and x’ are bounded.
Coming back to relation (5.3), we obtain from the boundedness of x

and x’ that  +00. Hence there is a sequence tn such that

x (tn ) --~ 0 and x’ (tn ) --~ 0. But, invoking again relation (5.3) at t = tn and
letting n - oo we obtain dr = 0, hence x = 0, a contradiction
which proves the claim.

Let us now proceed to the proof of the theorem. From Lemma 5.3, we
see that the singular solution x* crosses transversally the plane x = 0 at
some height z = z. From Lemma 5.1, it follows that for each p close to
N/ (N - 2) and all xa’s with sufficiently large a, let us say a > b > 0,
also cross x = 0 before reaching height 2z. On the other hand, from
Lemma 5.2, we see that all Xas with sufficiently small a, say 0  a  a,

also cross the plane x = 0 and the distance from the crossing point to the
x-axis is bounded below, away from zero.

Let us now consider xa with a E [a, b]. From Lemma 5.3, all xa’s
vanish before infinity if p = N/ (N - 2). Continuity of the solution of
the initial value problem in p then implies that for all p sufficiently close
to N I(N - 2), and all a E [a, b], xa also vanishes. Summarizing, we have
shown that no solution of problem (5.1 )-(5.2) can remain positive for all
r > 0 if p is sufficiently close to N/ (N - 2). This concludes the proof of
the theorem. 0

6. THE PROOF OF THEOREM 1.3

Let us fix q > (N + 2) / (N - 2). A first observation is that a singular
ground state with slow decay exists if and only if the one dimensional
manifolds and coincide, while a singular ground state
with fast decay is present whenever W"(Po) is contained in WS(Ooo).

Let us consider the solutions xo(t) and xoo(t) with z-component eYt
whose trajectories coincide respectively with WU (Po) and 

Referring to the notations introduced in the proof of Lemma 3.3, we
consider for a number z+ > 0 to be fixed later, the unstable and stable
sections UP(z+) and SP(z+). We consider one-to-one parametrizations
o’P and ~p with = ~p(0) = (0, 0, z+) and = 03C60(z+) n pP
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and = = QP . Let also l(s) be the half line constituted by
the z+-section of the plane branch of contained in x  0.

Let us consider liftings to polar coordinates around the point QP,

of these curves, selected so that

defines a continuous function of p.
Let us consider a number po > N/(N - 2) such that

Let N (po) be the total linking number in (0, oo) of the curves CPo and
Then N ( po )  +00. From the proof of Theorem 1.1 we know that

N ( p) grows to infinity as p t (N + 2) / (N - 2). Let us choose a number

po  p 1  ( N + 2) / ( N - 2) with N ( p 1 ) > N ( po ) +4 and such that (6.1 )
also holds at pi. The claim, from which the result of part (a) of the
theorem readily follows, is that there must exist a number p E (po, Pi)
such that either pP = Q p or pP E SP (z+) . We will show this, making a
suitable choice of z+.

Let us observe first that there is a number M > 0 such that for all

p E [po, 7?i]. z+ > 1, s E [0,1], M. On the other hand, since

xo (t) does not correspond to a singular ground state for any p E [po, PI],
it must cross the x = 0 plane. It follows that if we fix z+ large enough we
may also assume that IQP - = > M for all p E [po, Pi]. Let
us fix such a z+.

Let n o be the winding number n o = Then, enlarging z+
if necessary, we may also assume from Lemma 3.1 that no 
N ( po ) + 1. Now, from our choice of pi we then have that

Let us consider, the translates of the curve lP, = lP(s) + (2nn, 0).
Then if M > 0 was chosen large enough, the curves If separate the
region p > M into connected components, for all p E 
Now, 91 (s ) E (80 ( p) - n, 80 ( p) + n ) . Let us assume that the point cr p~ ( 1 )
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was between and ln+ 1. (Actually n = n o or n = no - 1. ) Then, by
continuity, 03C3p(1) is between ln and l +1 1 for all p E [po, p1] since this
point always was in p > M, see Fig. 6. We conclude that

and hence the winding number

We have reached a contradiction with (6.2), and hence the assertion of
the theorem in its part (a) holds. The proof of part (b) of the theorem is

analogous. D
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