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ABSTRACT. - Let Xo be a smooth uniformly convex hypersurface
and f a postive smooth function in Sn . We study the motion of convex
hypersurfaces X(., t) with initial X(., 0) = 03B8 X0 along its inner normal at
a rate equal to where K is the Gauss curvature of X ( ~ , t ) . We
show that the hypersurfaces remain smooth and uniformly convex, and
there exists 0* > 0 such that if 9  0*, they shrink to a point in finite time
and, they expand to an asymptotic sphere. Finally, when B = 9 *,
they converge to a convex hypersurface of which Gauss curvature is given
explicitly by a function depending on f (x ) . @ 2000 Editions scientifiques
et medicales Elsevier SAS
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INTRODUCTION

Let f be a positive smooth function defined in the n -dimensional
sphere 5’" and let Xo : 5’" -~ be a parametrization of a smooth,
uniformly convex hypersurface Mo. In this paper we are concerned with
the motion of the convex hypersurfaces M (t) satisfying the equation

with X(p,0) = Xo(p). Here for each t X (~, t) parametrizes M(t),
I~ ( v ( p , t ) ) is the Gauss curvature of M (t ) and v ( p , t ) is the unit outer
normal at X ( p, t). Notice that by strict convexity the Gauss curvature
can be regarded as a function of the normal. Recall that a uniformly
convex hypersurface is a hypersurface with positive Gaussian curvature
and hence it is stricly convex.
Our study on (0.1) is motivated by the search for a variational proof

of the classical Minkowski problem in the smooth category. Recall that
for a convex hypersurface the inverse of its Gauss map induces a Borel
measure on the unit sphere called the area measure of the hypersurface.
Naturally one asks when a given Borel measure on 5’" is the area measure
of some convex hypersurface. This problem was formulated and solved
by Minkowski [13] for polytopes in 1897 by a variational argument. Later
he extended his result to cover all Borel measures which are of the form

where f is continuous and da is the standard Lebsegue measure
on 5’" [14]. The regularity of the convex hypersurface realizing the area
measure was not considered by Minkowski. Thus it led to the Minkowski
problem in the smooth category, namely, when is a positive, smooth
function in ,Sn the Gauss curvature of a smooth convex hypersurface?
There are two approaches for this problem. On one hand, the method of
continuity was used by Lewy [12], Miranda [15], Nirenberg [16], and
Cheng and Yau [3]. On the other hand, a regularity theory was developed
for the generalized solution (see Pogorelov [17]). 

’

Let M be a convex hypersurface and V (M) its enclosed volume. We
have

where H and K are respectively the support function and Gauss

curvature of M. When expressed in the smooth category, Minkowski’s
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original proof is to show that the solution is the convex hypersurface
which minimizes the functional f H(x)/f(x)dQ(x) over all convex

hypersurfaces of the same enclosed volume. In view of this we may
consider the functional

It is not hard to see that (0.1) is a negative gradient flow for J. By a
careful study of this flow, we shall give another proof of the Minkowski
problem in the smooth category.
THEOREM A. - Let Xo be a smooth uniformly convex hypersurface.

For B > 0, consider (0.1) subject to

There exists 9 * > 0 such that the f low X (. , t) beginning at 8 * X o tends to
a smooth uniformly convex hypersurface X * in the sense that

smoothly as t -~ oo where ~’ is uniquely determined by

Furthermore, the Gauss curvature of X*, when regarded as a function of
the normal, is equal to f (x).
THEOREM B. - Let 8* be as in Theorem A. If B E (0, B*), the solution

of(O.I), (0.2) shrinks to a point in finite time. If 03B8 E (9*, oo), the solution
expands to infinity as t goes to infinity. In the latter case, the hypersurface
X (~, t)lr(t) where r(t) is the inner radius of X (~, t) converges to a unit
sphere uniformly.
As a direct consequence of Theorem A we have

COROLLARY (Minkowski problem). -A positive, smooth function f
in S" is the Gauss curvature of a uniformly convex hypersurface if and
only if it satisfies
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Theorems A and B will be proved in the following sections by an
approach similar to that used in [4], namely, by introducing the support
function of X (., t) and reducing (0.1) to a single parabolic equation of
Monge-Ampere type for its support function. In Section 1 we collect
some facts on the support function of a convex hypersurface. In Section 2
a priori estimates for the support function, in particular upper and lower
bounds for the second derivatives, will be derived. They are used in
Section 3 to establish Theorems A and B.

Motion of convex hypersurfaces driven by functions of Gauss curva-
ture of the form

has been studied by several authors including Andrews [I], Chou [4],
Chow [7], Frey [8], Gerhardt [10] and Urbas [18]. When ~ _ - K~ ,
a > 0, it was proved in [7] that M(t) exists and shrinks to a point in
finite time. Moreover, it becomes asymptotically round when a is equal
to I /n . In [1] it was shown that M (t) becomes an asymptotic ellipsoid
when a is equal to 1 I (n + 2). Expanding flows rather than contracting
ones were studied in [10] and [18]. For a class of curvature functions
including 45 = K -1 j ~‘ it was proved that M (t ) expands to infinity like
a sphere in infinite time. In all these results @ is independent of v. For
anisotropic flows very little is known. We mention the works Andrew [2],
Chou and Zhu [6], and Gage and Li [9].

1. THE SUPPORT FUNCTION

In this section we collect some basic facts concerning a convex

hypersurface and its support function. Details can be found in Cheng and
Yau [3] and Pogorelov [ 17] .

Let M be a closed convex hypersurface in Its support function
H is defined on Sn by

where x . p is the inner product in We extend H to a homogenuous
function of degree 1 in Rn+1. So H is convex and satisfies
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since it is the supremum of linear functions. If M is strictly convex, that
is, for each x in S’~ there is a unique point p on M whose unit outer
normal is x, H is differentiable at x and

Thus the map x p (x ) gives a parametrization of M by its normal. In
fact, it is nothing but the inverse of the Gauss map.

Geometric quantities of M can now be expressed through H. Let
eel , ... , en be an orthonormal frame fields on 5’". By a direct computation
one sees that the principal radii of curvature at p (x) are precisely the
eigenvalues of the matrix + where Va is the
covariant differentiation with respect to ea. In particular, the Gauss

curvature at p (x ) is given by

When H is viewed as a homogeneous function over the principal
radii of curvature of M are also equal to the non-zero eigenvalues of the
Hessian matrix 

Now we can reduce the problem (0.1), (0.2) to an initial value problem
for the support function. In fact, let H (x , t ) be the support function of
M(t). By definition we have

From (0.1) and (0.2) it follows that H satisfies

where Ho is the support function for Mo. Conversely, if X ( ~ , t ) is a family
of convex hypersurfaces determined by a solution of (1.3) and (1.4), it is
not hard to see that X ( ~ , t ) does solve (0.1) and (0.2). See, for instance,
[4] for details. Notice from (1.3) H (x, t) must determine a uniformly
convex hypersurface.

Eq. (1.3) has a variational structure. Consider the enclosed volume of
a uniformly convex hypersurface M,
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Regarding V as a functional on support functions, we find that the first
variation of V is

where h is any smooth function. Let’s consider the functional J defined

on all uniformly convex hypersurfaces

where f is positive. When H is a solution of (1.3),

Hence (1.3) is a negative gradient flow for J. (1.5) will be used in
the proof of Theorem A. This variational approach to the problem of
prescribed Gauss curvature was first adopted in Chou [5].
To obtain apriori estimates for the higher derivatives for H it is

convenient to express Eq. (1.3) locally in the Euclidean space. Thus let
u (y, t) be the restriction of H (x, t) to the hypersurface = -1, i.e.,

u ( y, t) = H ( y, -1, t). Then u is convex in Rn and we have

and
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for x = (y , -1 ) / 1 + Y ~ 2. Extend f to be a homogenuous function of
degree 0 in We get

where

2. A PRIORI ESTIMATION

First of all we note that the uniqueness of solution to (1.3), (1.4)
follows from the following comparison principle which is a direct

consequence of the maximum principle.
LEMMA 2.1. - For i = 1, 2, let fi be two positive C2 -functions on S’n

and Hi C2~ 1-solutions of

Suppose that Hl (x, 0)  H2(x, 0) and f 1 (x )  f2 (x ) on Then Hl 
H2 for all t > 0 and Hl  H2 unless Hl = H2.

In the following we shall always assume H E x [0, T]) is a
solution of ( 1.3), ( 1.4). Let R (t) and r (t) be the outer and inner radii of
the hypersurface X ( ~ , t) determined by H (x, t) respectively. We set

and

We shall estimate the principal radii of curvatures of X (. , t) from both
side in terms of ro ~ , Ro, and initial data.
LEMMA 2.2. - Let rand R be the inner and outer radii of a uniformly

convex hypersurface X respectively. Then there exists a dimensional
constant C such that
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where R (x, ~) is the principal radius of curvature of X at the point with
normal x and along the direction ~.

Proof - For any given t > 0, let

Then X is pinched between two parallel hyperplanes with distance h.
Suppose the infimum is attained at x = ( 1, 0, ... , 0) . By convexity we
can choose a direction perpendicular to the xl -axis, say, the x2-axis such
that

Let F be the projection of X on the plane x3 = ... = = 0. Then F is

a convex set and its diameter is larger than 1 2 R. By a proper choice of the
origin we may assume F is contained in } -h  xi 1  h } and f 0, ~ g R }
belongs to F. By projection we see that the supremum of the principal
radii of curvatures of the boundary of F cannot exceed that of X.

Let E be the ellipse given by

where b is chosen so that E C F and 9E is non-empty. Then

h /4  b C h / 2 provided R .» r. For any n 9F, since

(0, ±1 8R) E F, we have |x1| b / 2. Hence |x2|  3R/32. Simple
computation shows that the principal radius of curvature of the boundary
of F at (Jci, x2 ) is larger than R 2 / 83 b . Hence by noticing b  r we obtain

LEMMA 2.3. - Suppose that a(t), b(t) E C~ ([0, T]) and a(t)  b(t)
for all t. Then there exists h (t) E ([0, T]) such that

(1) aCt) - 2M  h(t)  b(t) + 2M;
(2) sup{|h(t1)-h(t2)| |t1-t2|: t1, t2 E [0, T]}  2 max{supt b’(t), supt (-a’(t))},

where M = aCt)).

Proof - We define h (t) step by step. Let to = 0, and ho = (a (0) +
b (0) ) / 2. For j > 1, let
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and

Then h (t) is the desired function. D

Now we give an upper estimate for the principal radii of curvature.

LEMMA 2.4. - For any y E ( 1, 2] there exists a constant Cy, which
may depend on initial data, such that

where D = sup{d(t) : t E [o, T ] } and d(t) is the diameter of X (~, t).

Proof. - Applying Lemma 2.3 to the functions - H ( - ei , t) and

H (ei, t) where are the intersection points of S’~ with the xi-axis,
i = 1, ... , n + 1, we obtain pi (t ) so that

and

Henceforth

and by (1.1)
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Let

where y E (1,2]. Suppose that the supremum

t ) : (x, t ) E Sn x [0, T], ~ tangential to 

is attained at the south pole x = (0,..., 0, -1) at t = t > 0 and in the
direction § = el . For any x on the south hemisphere, let

Let u be the restriction of H on = -1. Using the homogenity of H
we obtain, after a direct computation,

and

where

attains its maximum at (y, t) = (0, t). Without loss of generality we may
further assume that the Hessian of u at (0, f) is diagonal. Hence at (0, f)
we have, for each k,
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and

where Q = 1 + E(Ui - + (u + = 3 if k > 1 and it = 1,
and pi, = dpildt. On the other hand, differentiating Eq. (1.6) gives

where is the inverse matrix of Hence at (0, t ) we have

To proceed further let’s assume Ull > 1. By (2.2) we have Iu + 
2 D and 2D. From the inequality above we therefore obtain,
in view of (2.1 ),
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From Eq. (1.3),

It follows

Hence C(l + D log2 D|). This completes the proof of the lemma.
a

By combining Lemmas 2.2 and 2.4 we deduce the following important
corollary.
LEMMA 2.5. - For any given y e (1,2], there exists 03B4 = 03B4(03B3) > 0

such that

Next we give a positive lower bound for the principal radii of the
curvature. In view of Lemma 2.4 and Eq. ( 1.3) it suffices to give a lower
bound on Ht .

LEMMA 2.6. - There exists a constant C depending only on n, ro, Ro,
f, and initial data such that

Proof - Let

be the Steiner point of X(., t). Then there exists a positive 8 which
depends only on n, ro, and Ro so that H (x, t) - q (t) ~ x > 2~. Let us
consider consider the function

Suppose the (negative) infimum of 03A8 attains at x = (0,..., 0, -1 ) and
t > 0. Let u be the restriction of H to xn+1 = -1 as before. Then
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attains its negative minimum at (0, t ) . Hence

and

On the other hand, we differentiate (1.3) to get

Rotate the axes so that is diagonal at (0, i). Then

Since ut is negative at (0, t ), it follows from Lemma 2.4 that

We therefore conclude £ ukk  + Hence

and the lemma follows. D

Finally by comparing (1.3), (1.4) with the problem
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where M = E and po is sufficiently large, we see that
H (x, t) is always bounded in any finite time interval. Furthermore, its
gradient is also bounded by (1.1). It follows from the regularity property
of fully nonlinear parabolic equations [11] that a C4+a,2+a/2-estimate
holds for H, provided Ho E 0  a  1. By a continuity
argument we arrive at

THEOREM 2.1. - The problem ( 1.3), ( 1.4) with Ho E admits
a unique C4+a~ 2+«~2 solution in a maximal interval [0, T*), T *  oo.
Moreover, limt~T* R (t) = 0 if T * is finite.

Notice that the last assertion follows from Lemma 2.5.

3. PROOFS OF THEOREMS A AND B

We first prove Theorem A. Let m = inf f and M = sup f on sn. It
is readily seen that if the initial hypersurface Xo is a sphere of raduis
po > m -1 / n , the solution X ( ~ , t) to the equation

remains to be spheres and the flow expands to infinity as t -~ oo. On the
other hand, if Xo is a sphere of radius less than the solution to

is a family of spheres which shrinks to a point in finite time. Henceforth
by the comparison principle the solution X (x, t) of (1.3), (1.4) will shrink
to a point if B is smalll enough, and will expand to infinity if 8 > 0 is
large. We put

and

By the results in Section 2, it is easy to see that X (~, t) continuously
depends on 9 . Hence by the comparison principle 8*  8 * .
By Lemma 2.5 we know that for any 8 E [8* , ® * ] the inner radii of

X ( ~ , t ) have a uniform positive lower bound and the outer radii are
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unformly bound from above. Hence (1.3) is uniformly parabolic and we
have on the solution in S’n x [o, oo) .

In the following we fix 9 E [9* , 9 * ] . Let § E Rn+ be the point uniquely
determined by

Write X (x, t) = X (x, t) + ~ ~ t. So X is X translated in § / [ § with speed
~~ I. X satisfies

and the corresponding support function N = H + ~ ~ xt satisfies

The enclosed volumes of X and X are equal to

and is uniformly bounded. On the other hand, by (3.1)

is also uniformly bounded for all t. Hence the functional J(t) =
J((., t)) is uniformly bounded. Moreover, from (1.5) it is non-

increasing. By the of TV we also have that

and

Therefore, we conclude that limt~~ i’ (t) = 0.
We claim that N is bounded for all t. In fact, it is sufficient to show

that jx d03C3 is bounded. For, assume 77 is unbounded. Then we can
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find -~ oo, such that X(x, tj)/d(tj), where d(tj) is the distance
from the origin to X (., t j ) , converges to a point on Without loss of

generality we take this point to be Then the characteristic functions
of A j = {x E Sn : xn+1 > 0, H (x, t j ) > 0} and B j = {x E  0,
H (x, t j )  0} converges pointwisely to the upper and lower hemispheres.
We may also assume that converges uniformly
to some function g which is positive on the upper hemi-sphere S+.
Therefore, we have

Hence I can be arbitrarily large for large t j .
Now we have, by (1.5),

On the other hand, by the necessary condition for the Minkowski

problem, we have

as Ht is uniformly small for large t. Therefore,

Hence f x is uniformly bounded for all time. Consequently by the
Blaschke selection theorem for an y se q uence - oo, we can

extract a subsequence such that { H (x, converges uniformly to
some H (x) on Clearly H is a solution of K = To show the

convergence is actually uniform let’s consider another limit H’. Since the
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curvature of H’ is also given by H’ differ by a translation.
Let H - H’ = 1 . x for some 1 E Since

as t , s - 

Finally let’s show 8* = 8 * . First we observe that by the comparison
principle one must have H* = H*, where H* (respectively H*) is the
solution of K = starting from 8* Ho (respectively B * Ho). However,
consider the equation obtained by differentiating (1.3) and (1.4) in 8 :

where is the inverse of + H~a,~ ) . By the maximum
principle H’(x, t) ~ min Ho > 0. Thus

So 0* = o* . The proof of Theorem A is finished.

Proof of Theorem B. - It remains to show that the normalized hyper-
surface X ( ~ , t)lr(t) converges to a unit sphere in case 9 > 8 * . Let’s de-
note the solution of (1.3), (1.4) by H ( ~ , t) and its hypersurface by X ( ~ , t ) .
Since X is expanding, we may simply assume that it contains the ball
BRl (0) where Ri 1 > 1 + m -1 ~n at t = 0. On the other hand, we fix R2 so
large that X (. , 0) is contained in BR2 (o).

For i = 1, 2, let Xi ( ~ , t ) be the solution of (1.3), (1.4) where f is

replaced by m and M respectively and Xi (. , 0) = Clearly X ~ ( ~ , t)
are spheres whose radii Ri (t) satisfy

for some C > 0. Hence
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and so

Consequently = 0. By the comparision principle X (. , t)
is pinched between X2 ( . , t ) and X 1 ( ~ , t ) . So X ( ~ , t) I r (t) must tend to the
unit sphere uniformly.
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