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ABSTRACT. - In this paper, we consider mixed problems with a
timelike boundary derivative (or a Dirichlet) condition for semilinear
wave equations with exponential nonlinearities in a quarter plane. The
case when the boundary vector field is tangent to the characteristic which
leaves the domain in the future is also considered. We show that solutions

either are global or blow up on a C~ 
1 
curve which is spacelike except

at the point where it meets the boundary; at that point, it is tangent to
the characteristic which leaves the domain in the future. @ 2000 Editions
scientifiques et médicales Elsevier SAS

Key words: Semilinear wave equations, Mixed problems, Blow-up of solutions

RESUME. - Dans cet article, nous considerons des problemes mixtes
avec une condition au bord de type temps (ou de Dirichlet) pour des

equations d’ ondes semi-lineaires a non-linearites exponentielles dans un
quart de plan. Le cas ou le champ de vecteurs au bord est tangent a la
caracteristique qui quitte le domaine dans le futur est aussi considere.
Nous montrons que les solutions soit sont globales, soit explosent (au
moins hors du bord) sur une courbe C~ 1 qui est orientee d’espace sauf

1 E-mail: pgodin@ulb.ac.be.
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au point ou elle rencontre le bord ; en ce point, elle est tangente a
la caracteristique qui quitte le domaine dans le futur. @ 2000 Editions
scientifiques et médicales Elsevier SAS

Mots Clés: Equations d’ ondes semi-lineaires, Problemes mixtes, Explosion des
solutions

1. INTRODUCTION

This paper is a continuation of [3] in which a study was made of
the blow-up curve of solutions of mixed problems in a quarter plane
for semilinear wave equations with exponential nonlinearities, when the
boundary vector field is spacelike. In that case, results similar to those
of Caffarelli and Friedman [1,2] were obtained: it was proved in [3]
that non global solutions blow up on a C~ 1 spacelike curve. When the
boundary vector field is tangent to the characteristic which leaves the
domain in the future, weaker results were obtained in [3]. In the present
paper, we consider the case when the boundary vector field is constant
and either timelike or tangent to the characteristic which leaves the
domain in the future; we also consider the case of a Dirichlet boundary
condition. The blow-up method of [1,2], adapted in [3], does not seem
to be easily applicable in the present situation. We impose conditions
on the nonlinearities which are more restrictive than those of [3]. By a
completely different method based on conservation laws, we show that
non global solutions still blow up (in a sense which will be made clear)
on a C curve which is now spacelike except at the meeting point with the
boundary where it is characteristic (actually tangent to the characteristic
which leaves the domain in the future).
Our paper is organized as follows. In Section 2 we recall some results

of [3] and state our new results precisely. In Section 3, we show that a
certain result of [3] is impossible if the boundary vector field is timelike.
Asymptotic expansions are obtained in Section 4, and the proofs are
completed in Section 5. In order to avoid interruptions in a number

of proofs, some useful results on mixed problems and on fundamental

systems of solutions of ordinary differential equations are collected in
two appendices at the end of the paper: in particular, some estimates from
[3] are recalled in the first appendix.
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2. STATEMENT OF THE RESULTS

We consider the following mixed problem for (real-valued) functions
u of (x, t ) :

where D = a; and y ~ 1, 1 (the case [  1 has been

considered in [3]). We introduce the compatibility conditions

The following result is well known. A proof has been given in the
appendix of [3]. We write R+ = {s E R, s &#x3E; 0}, R+ = {s E R, s &#x3E; 0}.

THEOREM 2.1. - 
__

(1) If F E CI(JR), y ~ 1, ~~ E for j = 0,1, and if (2.4),
(2.5) are satisfied, there exists an open neighborhood U of {0{ x
JR+ in (JR+)2 such that (2.1), (2.2), (2.3) has exactly one solution
u E C2 (U).

(2) If furthermore F E 1/ry E for j = 0, 1 and (2.6)
holds, then the conclusion of (1) still holds with some u E C3(U).

(3) If furthermore F E in ( 1 ) or (2), one can take U = (II~+)2.
If y = 1, Theorem 2.1 is already false when F - 0. In [1,2], Caffarelli

and Friedman have studied the blow-up of solutions of Cauchy problems
for equations of type (2.1), when F(u) is bounded below on R and
behaves like uP, p &#x3E; 1, as u -~ +00. In [3] we have assumed that F
satisfies the following conditions.

F E C2(JR) and for some Co, C1, C2, p, A &#x3E; 0, the following holds:
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Under the assumption (2.7), we have considered in [3] the Cauchy
problem

where u~ E (R) (and u~ is real-valued), j = 0, 1. We have proved:

THEOREM 2.2 (cf. [3]). - Assume that (2.7) holds. Then there exist
(1) II~ --~]o, such that c I~+ or = {~-.oo},
(2) u E C3 (S2), where S2 = { (x, t) E 0  t  such that u is

a solution of (2.8), (2.9) in Q,
with the following properties: C R+, then ~p E C 1 (II~), ~  1
for all x E R, and u(y, s) -~ if s  and (y, s) ~ (x, for
some x E R.

The next two theorems have also been proved in [3].

THEOREM 2.3. - Assume that. (2.4), (2.5), (2.6), (2.7) hold and that
 1. Then there exist

( 1 ) II~+ ~ ]o, +00] such that c or = { ~--oo },
(2) u E C3 (SZ), where S2 = { (x, t) E (II~+)2, t  such that u is

a solution of (2.1 ), (2.2), (2. 3 ) if (x, t) E Q,
with the following properties: if C R+, then ~p E C 1 (I~+), ~ ~p’ (x ) ~ [
 1 , for all x E R+, = y and u(y, s) ~ if s  and
(y, s) --~ (x, for some x E R+.

THEOREM 2.4. - Assume that (2.4), (2.5), (2.6), (2.7) hold and that
y = -1. Then there exist

( 1 ) II~+ ~ ]o, +00] such that C or = {+oo },
(2) u E C3(S2), where Q = {(x, t) E (II~+)2, t  such that u is a

solution of (2.1), (2.2), (2.3) if (x, t) E Q,
with the following properties: if C R+, then ~p E C 1 (II~+), u (y, s)
-~ if s  and ( y , s) -~ (x, for some x E R+, and
for each R &#x3E; 0, one can find 8 E ] o, 1 [ such that -1   8 if
0xR.

To improve the results of [3] when y = - l, and to study the cases
when I Y I &#x3E; 1 or the Dirichlet boundary condition, we shall have to use a
different method and make more restrictive assumptions on F.
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We shall consider the following additional assumption on F (with A, p
as in (2.7)):

Then we have the following result, which is similar to Theorem 2.3.

THEOREM 2.5. - Let all assumptions of Theorem 2.4 hold, and
assume moreover that (2.10) is satisfied. Then we have the following
additional conclusion: C R+, then ~p E C 1 (II~+) and ~p’ (0) _ -1.

For the sequel, and also to compare Theorem 2.5 with Theorem 2.8
below, it will be convenient to reformulate (2.10) in the following way:

Indeed, if (2.10) holds, integration of the relation g’ (t ) = p ( F (t ) -
(F(t) - over [0, z ] yields (2.11 ) (with a larger a if

a  0). And if (2.11) holds, integration of the relation (e-pt (F +
g) (t))’ = - over [0, z] shows that exists,
and integration of the same relation over [z, +oo[ then yields (2.10) (with
some A E 

The following simple theorem shows that when y ~ [ &#x3E; 1 and the

solution blows up on a C 
1 
curve t = we cannot expect to have

~p’ (o) = y as in Theorems 2.3 and 2.5.

THEOREM 2.6. - Assume that 0, that V is an open neighbor-
hood of xo in that V ~ and that Q = f (x, t) E V x t 

is open. Assume that Du = F(u) in Q, where u E C2 (S2 ) and F is
bounded below on R and bounded above on every half line ] - oo, a [, a E
R. Assume that )u (y, s) ~ as s  and (y, s) -~ (xo, 
Then

( 1 ) one can find a sequence (Xk) with xk ~ xo and 
xk - xo~

(2) if furthermore xo &#x3E; 0, one can find a sequence (Yk) with 0  yk -~
xo and -xo + yk~
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Remark 2.1. - Theorem 2.6 is applicable if F (u ) = However
its conclusions are false if F (u ) = uP, p E 2N B {0}, as the function
u(x, t) = aCt - yx - (where a ~ R and ap-1 =q(q-E-1)(1 -y2),
q = p21 ) shows. If y &#x3E; 1, this function is a solution of a problem of type
(2.1 ), (2.2), (2.3) when 0  t  y x + 1, x &#x3E; 0. 

’

Remark 2.2. - The conclusions of Theorem 2.6 are false for F(u) _
eu if we consider complex-valued solutions, as the example u(x, t) =

We shall also consider the Dirichlet boundary condition .

and introduce the corresponding compatibility conditions for (2.1 ), (2.3),
namely

The following well known result corresponds to Theorem 2.1.

THEOREM 2.7. - Theorem 2.1 remains true if (2.2), (2.4), (2.5), (2.6)
are replaced by (2.12)-(2.16).

The proof of Theorem 2.1 given in [3] can easily be modified to give a
proof of Theorem 2.7. We omit the details.

When |03B3( &#x3E; 1 or when (2.2) is replaced by (2.12), the method of proof
of Theorem 2.3 does not seem to work. However we can still prove the

existence of a blow-up curve if we add the following rather restrictive
assumptions on the nonlinearity F (u ) :

(1) &#x3E; 1;

(2) if g E C2(JR) satisfies the equation g’ = p F - F’ on R,

then g, g’ E in case y &#x3E; 1, and g, g’ E L°° (I~+) in case

y  -1 or when the boundary condition is given by (2.12).
(2.17)

We shall prove the following result.
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THEOREM 2.8. - (I) Assume that y ~ &#x3E; l, and that (2.4), (2.5), (2.6),
(2.7), (2.17) hold. Then the conclusions of Theorem 2.3 still hold with the
following modifications: if c II~+, now I  1 only if x &#x3E; 0,
~p ( ) _ -1, and u(y, s) - +00 if s  and (y, s) -~ (x, rp(x)) for
some x, where x &#x3E; 0 if y &#x3E; 1 and x &#x3E; 0 if y  -1.

(II) Assume that (2.13), (2.14), (2.15), (2.16), (2.7), (2.17) hold. Then
the conclusions of (I) for y &#x3E; 1 still hold for the problem (2.1 ), (2.12),
(2.3).

Remark 2.3. - The function u (x, t) = ln(2/cosh2 x) satisfies Du = eu
if (x, t) E JR2; furthermore, for all y E JR, UX + yut = 0 if x = 0, and
u = 0 if x = 1 ) . Hence it may happen that cp = +0oo in Theorems
2.2, 2.3, 2.4, 2.5, 2.8.

Remark 2.4. - Assume that F satisfies the assumptions of Theo-
rem 2.2 and that F &#x3E; 0. Denote by T the triangular domain with vertices
(a, 0), (b, 0), b 2a ~ , where 0  a  b. It follows from the results of

[6] that one can find b]) such that there is no u E C2(T)
satisfying at u = z/ry in ]a, b[x {0} for j = 0, 1 and Du = F(u) in T.
Extending 0/0, V~i to R+ in such a way that the compatibility conditions
(2.4), (2.5), (2.6) (or (2.13), (2.14), (2.15), (2.16)) are satisfied, we ob-
tain examples for Theorems 2.3, 2.4, 2.5, 2.8 with c When,
e.g., F(u) = eu, see also [7] and references given there for constructions
which yield examples for Theorem 2.3.

Remark 2.5. - Replacing u(x, t) by (Ap)-1~2t) and
F(z) by we may and shall assume in the rest of the paper
that p = A = 1 in (2.7), (2.10), (2.17). This will simplify a number of
expressions later on.

Remark 2.6. - In Theorem 2.2, S2 is the maximal influence domain
of R x R+, containing R x {0}, in which (2.8), (2.9) has a (unique) C3
solution. Likewise, in Theorems 2.3, 2.4, 2.5, 2.7, 2.8, Q is the maximal
influence domain of (JR+)2, containing R+ x {0}, in which (2.1), (2.2) (or
(2.12)), (2.3) has a unique C3 solution.

3. BOUNDS FOR SOLUTIONS OF LINEAR DIRICHLET
PROBLEMS

If R &#x3E; 0, put DR = { (x, t) E (JR+)2, X + t  R } . If (x, t) E (JR+)2, write
t) = {(y, s) E (II~+)2, s &#x3E; t, x [  It - Finally, if (x, t) E

DR, put t) = K+ (x, t) n DR. Assume that Q : II~+ --~ satisfies
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( ’~l~’ (x 1 ) - ’~/~’ (x2 ) I  IXl 1 - x2 ( for all x 1, x2 &#x3E; 0 and write U = { (x , t ) E
(IR+)2, t  ~ (x) } . Assume that u E C2(U n DR), F E C (U n DR), and
that the following holds:

It is certainly well known and easily checked by integration of Du
over K - (x , t ) , and also over K - (o, t - x ) if x  t, and by use of the
divergence formula, that u = u + u2, where

The following result immediately follows from (3.4), (3.5).

LEMMA 3.1. - If Co &#x3E; 0 and F &#x3E; -Co, one can find C &#x3E; 0

(depending on R, Co, but not on F) such that u &#x3E; -C in U n DR.
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4. PROOF OF THEOREM 2.6

Let us prove (1). Assume that, for some 8 &#x3E; 0, &#x3E; x - xo if
x E ]xo, xo + ~] . Assume that 8  and denote by ~o the triangular
domain with vertices (xo, (xo ~- ~, ~p (xo ) - ~ ) , (xo + 8, +

~ ) . If (x , t ) E Po, denote by P the triangular domain with vertices
(x, t ) , (xo + 8, t - + x ) , (xo + + xo + 8 - x ) . We have

Since F is bounded below, it follows from (4.1) that u is bounded
above in Po. But then (4.1 ) again shows that u is bounded below in ~o .
This contradicts the fact that u (x , t)1 -~ oo as t  and (x, t) -~
(xo, ~p (xo) ) . This proves (1). The proof of (2) is completely similar and
may be omitted. The proof of Theorem 2.6 is complete.

5. SOME ESTIMATES OF SOLUTIONS

Our purpose is to prove the following two propositions, which will
play an important role in the proof of Theorems 2.5 and 2.8. Recall that
we assume, as we may, that p = A = 1 in (2.7) (2), (2.10), (2.17) (see
Remark 2.5). As before, we put DR = f (x, t) E (II~+)2, x + t  R~ if
R &#x3E; 0.

PROPOSITION 5.1. - Let F E CI(JR.) satisfy (2.7) (1) and (2.17) (with
g E C 1 (I~) ), and assume that to &#x3E; 0, that

and that Du = F(u) in Dto.
(I) If ux + y ut = 0 when x = 0 and 0  t  to (where y ~ 1 )

and if t H ut (0, t) is bounded when 0 C t  to, it follows that
u E 

(II) If u = 0 when x = 0 and 0  t  to and if t H u x (0, t) is bounded
when 0  t  to, it follows that u E 
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When, at the contrary, the function t (ux(O, t), Ut(O, t)) is un-
bounded when 0  t  to, one can obtain asymptotic expansions when
x = 0, as the next proposition shows. Henceforth we shall write 9~ ==

PROPOSITION 5.2. - Let X : II~+ -~ R+ be such that X (0) = to &#x3E; 0,
E (R+)2, t  X (x)}. Let F ~ C1(R) satis, fy

(2.7)(1), (2.7)(2), and assume that u E C3 (l1), Du = F(u) in A.
(I) If F also satisfies (2.17) (with g E if ux + y ut = 0

when x = 0 and 0 ~ t  to (where [ &#x3E; 1 ), and if the function
t t) is not bounded as t -~ to, the following estimates
hold for some C &#x3E; 0 with I = min(1, 2 Y±l ) Y if 0  t  to :

(II) If F also satisfies (2.17) (with g E C~ (1I8)), if u = 0 when x = 0
and 0  t  to, and if the function t H ux (0, t) is not bounded

as t ~ to, then the following estimates hold for some C &#x3E; 0 if

(III) If F also satisfies (2.10), if ux - u t = 0 when x = 0 and 0  t  to
and if the function t E--~ ut (0, t) is not bounded as t ~ to, the
following estimates hold for some C &#x3E; 0 if 0  t  to  t + 2e v
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where

A crucial role will be played in this section by two simple conservation
laws which we are going to derive now. Assume that D is an open subset
of (ffi.+)2 and that u E C3 (D) . Let g E be such that g’ - F - F’.
Then it is readily verified that the following conservation laws hold:

In the proof of Propositions 5.1 and 5.2, we shall use (5.1); (5.2) will
be used later on. Let us integrate (5.1) over the triangular domain DT
with vertices (0,0), ( T , 0), (0, T), 0  T  to. Put

If u x + y u = 0 on f 0 } x [0, T ] , we obtain

If u = 0 on f 0} x [0, T ] instead, we obtain

Proof of Proposition 5.1 (I). - We shall first show that

the function t utt (0, t) belongs to tor). (5.5)
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Applying aT to (5.3), we see that it is enough to show that the function

belongs to L °° ( [o, to [) , which in turn will be a consequence of the fact
that

where T is the triangular domain with vertices (0,0), ( 2 , 2 ), (0, to). Let
us check (5.6). If we multiply the equation -utt + Uxx + F(u) = 0 by ux,
we obtain that

Integrating this last relation over the triangular domain T with vertices
(x, t ) , (0, t + x ) , (0, t - x ) and using the divergence formula, we obtain
that

Now

and

Furthermore, it follows from (2.17) that g (u ) &#x3E; - C in T. This is clear
if y &#x3E; 1, and follows with the help of Lemma A.I of Appendix A if
y  1. Hence F(u)  0(u) + C, and (5.6) follows. Hence (5.5) holds.
Now denote by U the solution of the Cauchy problem DU = 0 in T,
ax U = al u when x = 0, 0  t  to, and j = 0, 1. Then of course
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so it follows with the help of (5.6) that aa u E L 00 (7) if 2. Actually
we have that

the function t t ) belongs to C([0, to]) . (5.7)

Indeed, if = 1, the function t H ~ a u (o, t ) belongs to C([0, to]) since
the function t t ) belongs to tor). Now the function

is Lipschitz continuous on [0, tor since a a u E if 2. Then

(5.7) follows easily if we apply aT to (5.3). Using (5.7) and the relations
ux + yut = 0 if x = 0, uxx = utt - F(u), we obtain that the function
t belongs to if 2. Proposition 5.1(1) now
follows from standard results corresponding to Theorem 2.1 ( 1 ) for the
Cauchy problem for the equation Du = F (u ) in T with Cauchy data on
{o} x [0, to]. D

Proof of Proposition 5.1 (II). - Arguing as for (I), but with (5.3)
replaced by (5.4) and Lemma A.I of Appendix A replaced by Lemma
3.1, we obtain again that the function t t) belongs to C([0, to])
if 2; and we can then conclude as in (I). 0

Proof of Proposition 5.2(1). - Assume first that y &#x3E; 1. Since g E
L °’° (I~) , it follows from (5.3) that

the function

Since F is bounded below, it follows from (5.8) that ut (and so u ) are
bounded above if x = 0 and 0  t  to, so that F (u ) (o, t ) E tor).
Hence it follows from (5.8) that

the function

belongs to L °° ( [o, to [) .
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Since the function t t--~ t ) does not belong to to [) , it follows
from (5.9) that one can find a sequence (tk ) such that tk / to and

tk ) B -oo. On the other hand it follows from (5.9) that t2 ) 

It follows from (5.9) that ~ - ~ E to [) . Since ~’ (t) - +00 as
t ~ to, we therefore obtain that ~ (t) --~ +00 as t ~ to and so (~ - Co)2 
~’  (~ + Co)2 for some Co &#x3E; 0 if t is close to to. Hence

so using (5.9) we obtain that

Integrating (5.10) with respect to t yields

Differentiating (5.3) with respect to T yields

Now we have that

Actually, it follows from (5.10), (5.11 ) that
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Hence if we integrate the identity

over the triangular domain with vertices (0,0), (T, 0), (0, T ) and use the
divergence formula, we easily obtain that

Now u(x, T - x) = + if 0  T,
and F(u) (s, T - s) ds  F(u) (s, T - s) ds + C since F(u) &#x3E;
- Co . Hence u ~ (x , T - x ) is bounded above by the right-hand side of
(5.15) (with a larger C). Therefore if we write = 2 a~ (g (u ) ) +

(5.13) follows easily. From (5.12), (5.10), (5.11), (5.13), we
easily obtain that

Since Ux t when x = 0 and 0  t  to, it follows then that
= 2(1 + F (u ) . A simple computation using (5.10), (5.11 ),

(5.16) gives that

This proves Proposition 5.2(1) if y &#x3E; 1.
Assume now that y  -1. Let Dto be the triangular domain with

vertices (0, 0), (to, 0), (0, to). Since y  -1, it follows from Lemma A.1
of Appendix A that u &#x3E; - C in Dto . S ince g E it follows that
(5.8) still holds, from which we obtain that
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where G e to [) n C 2 ( [o, to [) . Since the function t h~ t ) does
not belong to L°° ([o, to [), it follows from (5.18) that one can find a
sequence (tk) such that tk ~’ to and tk) ~ +00. (5.18) shows that
ut (o, t2) &#x3E; C if tl  t2  to; therefore ~ +00 as

t 1 to. Put G(s) ds, 0  t  to, Vet) = u(0, t) - G(t).
From (5.18) it follows after differentiation with respect to t that

Now U’ (t) &#x3E; 0 for t E [t1, to [ if tl is close to to. Put m = lim  U (t), so
m E ] U (tl ), +00]. Let U : ] U (tl ), be the inverse function of
U, and write From (5.19) it follows
that

if s E ] U (tl ), m [, so if we put ~ (s) = Z2 (s), we obtain that

if s E ] U (tl ), m [. If m  +00, it follows from (5.21) that ~’’  C(~ + 1)
for some C &#x3E; 0; hence § is bounded above as s ~ m, which contradicts
the fact that t ) --~ +00 as t ~ to. Hence m = +00. Let us now
check that

if and s is large. If we integrate the identity
+ g)(s))= over [~, 0], ~ &#x3E; 0, and let 0 ~ +00, we

obtain that F(~) ~ e’ + ~(~), where ~(~) = -g(~) + If

we put = = + + 9~)), =
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if s &#x3E; U(ti), so that + 1 if s &#x3E; U (tl ), with c~ as in

(5.22). From this last bound on it readily follows, since w &#x3E; 0,
that the limit H(s) exists; let us call it B. Of course B &#x3E; 0.
We are going to show that B &#x3E; 0. Since H’(s) (  for s large,
(5.22) will follow at once. For simplicity, put a = 4 , b = -1~ , so
that b = 2a - 1 &#x3E; 0. Call R (s) the right-hand side of (5.23). Define the
sequence (ak ) by ai = a, ak+ = a + ~. Notice that + 1 if and

only if b &#x3E; ak+1. Assume that B = 0. Denote by Cy, Cj various strictly
positive constants. We are going to show by induction that

and H (s) ~  Cje-ajS for s large, if j E N B {o} . (5.24)

From (5.24) it will follow that b &#x3E; a -I- j - 1 for all j E N B {o} . This
contradiction of course will imply that B &#x3E; 0. Now if b  a, then

R (s) &#x3E; 0 for s large, which contradicts the fact that B = 0. Hence b &#x3E; a,
so R (s) ~  for s large, and therefore H (s) ~  for s large
since B = 0. Hence (5.24) follows for j = 1. Assume that (5.24) has been
proved if j x k, and let us show that it still holds if j = k + 1. Assume
that b  Since ( H (s) ~  for s large, it follows that R (s) &#x3E; 0

for s large, which contradicts the fact that B = 0. Hence b &#x3E; But

then R (s) ~  Ck+1e-ak+lS for s large, so H (s) ~  for s large
since B = 0. Hence (5.24) holds if j = k + 1. Therefore we conclude that
B must be &#x3E; 0, and this completes the proof of (5.22).
Now (5.22) implies that if s &#x3E; 

hence

Integrating (5.25), we obtain that

This implies that
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so C (to - t)l , with I as in the statement of Proposition 5.2 and
therefore (5.26) can be improved to

which, together with (5.25), then implies that

Also (5.27) yields

Let us check that (5.13) still holds. Actually, it follows from (5.28),
(5.29) that (5.14) and (5.15) still hold (with In(to - T) + 1 replaced
by (to - T ) -1 +l in the right-hand side if - 3  y  -1 ) . Reasoning as in
the case where y &#x3E; 1, we easily conclude that (5.13) still holds. Since it
is clear that (5.12) also holds, it follows that

Arguing as for (5.17), we easily obtain that Proposition 5.2(1) (3) holds if
y  -1. This completes the proof of Proposition 5.2(1). D

Proof of Proposition S. 2(II). - As before, let Dto be the triangular
domain with vertices (0,0), (to, 0), (0, to). It follows from Lemma 3.1

that u &#x3E; -C in Dto, so that (5.4) implies that the function t ~ ux (0, t) -

belongs to If we then argue as for (5.10)
(with obvious modifications), we obtain that

(5.14) and (5.15) still hold with ~+Y22 replaced by 1 in the right-hand
side. It follows that (5.13) still holds, so if we differentiate (5.4) with

respect to T, we obtain that
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Proposition 5.2(II) follows at once from (5.30) and (5.31). 0

Proof of Proposition 5.2(III). - Lemma A.2(3) of Appendix A shows
that t) -~ +00 as t -~ to. (5.3) gives that

if 0  t  t0, where

Using (2.11 ), Lemma A.2(2) of Appendix A, Lemma A.1 of Appendix A,
we obtain that s ) ~  C (to - y - s)-2a if y + s  to, whence

Define G, U, ?~l , Z, ~, g, ~, M, N, H as in Proposition 5.2(1), but with y
replaced by (-1 ) . Notice that

and that it follows from Lemma A.2(1) of Appendix A that

~ +00 as t ~ to. Hence in particular there exists

tl E [0, to[ such that U’(t) &#x3E; 0 if t &#x3E; tl and so U is well defined on

] U (tl ), +oo[ since U’ (t) -~ +00 if t -4~ to. (5.23) can be written

where P (s) 2014~ ~ as s -~ +00. By Lemma 4.1 of [3] and (5.32), it follows
that |g(s)|  Ce2as if s &#x3E; U(t1). If a &#x3E; 0, let k ~ N B f 0} be such that
(2a ) k  2  (2a ) k-1. We are going to show that

Since we already know that (5.34) holds for j x 1, it is enough to show
that if ~~(s)~  CefJs for s &#x3E; U(t1), where f3 = (2a)j for some j E N
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with j  k - 1, then |g(s)|  Ce2afJs for s &#x3E; U(t1). To achieve this,
observe that (5.33) implies that for s &#x3E; 

whence H (s) ~  and therefore from which
it follows that C(to - t)-1. By (5.32), it follows that 
C (to - u (S ) ) -2a  Ce2afJs if s &#x3E; from which (5.34) follows. If
a &#x3E; 0, put T = (2a ) k with k as in (5.34); if a = 0, put T = 0. So we have

Let K(s, H ) = + pes) be the right-hand side of (5.33).
Let us show that

To achieve this, put ~, = 2 - T, where r is as in (5.35), and define
~ _ {s &#x3E; C2 if a E [U(ti), s~] ~ where C2 will be
chosen later. If C2 is large, then ~ ~ Q~. ~ is closed, and let us show that
~ is open. Taking C1 1 large enough, we may assume that Ci 1 so if
s E ~, it follows that H(cr))~  2CiC2 + Ci if a E [U(tl), s]. But
then (5.33) implies that (2C1C2 + Cl ) (s - U (tl )) + H (U (tl )),
which is ~ ~2 if H ( U ( t 1 ) )  w ~2 2 and C 2 is large enough. Then
s ~- ~ E ~ if ~ &#x3E; 0 is small, which shows that £ is open. But then
~ _ [U(ti), +oo[, from which (5.36) follows at once. Now (5.33) and
(5.36) imply that H (s) (  Cs if s is large; together with (5.35), this
implies that K (s, H(s)) -~ 2 as s ~ +00. It follows that -~ 2 as
s --~ +00, so finally

Hence if we put ~ (s ) we obtain that

where L E C 3 ( [o, to [) and L (t ) ~  t 0. But we have the following
estimate 
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if 9  0 is close to 0. Let us check (5.38). To achieve this, put first
f (s ) = e-S ~2s -1 ~2 . We shall first check that

if 03B8  0 is close to 0. Indeed, define a : [1, [ 1, +~[: s H s + In s .
Put b = a-1. Then b’ = b+1  1 and b(1) = 1. Hence b(y) = y + R(y)
with R (y)  0 if y &#x3E; 1. Actually we have for some Ci, C2 &#x3E; 0: .

if y is large. Indeed it is easily checked that ln ( 1 + z) &#x3E; a z if
a &#x3E; 1 and a - 1  .z  0, whereas ln ( 1 + z)  z then. Using this
with z = R(y) /y and the fact that R(y) + ln(y + R(y)) = 0, we
obtain (5.40), from which (5.39) follows easily. We can now prove
(5.38). Integrating by parts, we obtain that ~(s) - -2e-s~2s~1~2(1 +
J(s)), where J(s) _ - 2 f °° e-ps~2(p + 1)-3~2 dp. Writing ]0, +oo[ _
]0, 1 [ U [ 1, +oo[ and decomposing J (s) accordingly, we readily obtain
that J (s ) ~  C s -1. Since

(5.38) follows from (5.39) after some simple computations. From (5.37)
and (5.38) it follows that, if t  to and t is close to to,

with R(t) ~ 0 as t 1 to. (5.41) implies in particular that It - to) ~
Ce-U~t»2(LI (t))-1~2. on the other hand, it follows from (5.32) that

whence 2 ~  
Since z &#x3E; a and since H (s) ~  Cs for large s, it follows from (5.33) that
~ H’ (s ) - 2 ~  when s &#x3E; where ~, = 4 - T as before.
Hence ( H (s ) - 2 ~  C when s &#x3E; U(ti). It follows that

if t  to and t is close to to. Using (5.41) we may bound the right-hand
side of (5.42) above by C /In if t  to and t is close to to. It follows
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in particular that ~~(U(t)) - 2-1/2 (t - to)  C (to - t) /In if t  to
and t is close to to, so from (5.38) we obtain that the function R of (5.41)
satisfies

if t  to and t is close to to. The estimate (1) of Proposition 5.2(111)
follows at once. Using (5.42), we easily find then that

if t  to and t is close to to, and the estimate (2) of Proposition 5.2(III)
follows immediately if we make use of (5.32).

Since u~(0, t) = 0 and t) = -F(u)(O, t), and since 
es|  Ceas for s large, the estimate (3) of Proposition 5.2(III) follows
from the estimate (1). The proof of Proposition 5.2 is complete. a

6. MORE ON SOLUTIONS AND PROOF OF THEOREMS 2.5
AND 2.8

To prove Theorems 2.5 and 2.8 we shall need additional properties
of solutions to Du = F(u) satisfying boundary conditions when x = 0.
Assume that a &#x3E; 0 and that X : [O, a] -~ belongs to C([0, a]) ~1
Cl (]0, a]) and satisfies X (O) - to, -1  1 if x E]O, a]. Put
A = {(x, t) E (Il~+)2, t  x (x), x + t  a + X (a)}. Let F be as in (2.7),
and assume that u E C3(A) and that Du = F(u) in ~l. Also assume that
either (1) F also satisfies (2.17), ux + y u = 0 when x = 0 and 0 x t  to,
where y ~ I &#x3E; 1, or (2) F also satisfies (2.17), u = 0 when x = 0 and
0 x t  to, else (3) F also satisfies (2.10), ux - Ut = 0 when x = 0 and
0  t  to. We shall need the next two propositions in order to prove
Theorems 2.5 and 2.8.

PROPOSITION 6.1. - Assume that for all x E ]O, a], the following
holds: ~ X’ (x) (  1 and u(y, s) -~ as (y, s) E ~ and (y, s) --~

(x, X (x)). Also assume that the function t H ux (O, t) does not belong
to to[). Then X’ (x )  -1 as x  0.

PROPOSITION 6.2. - Assume that X (x) = x + to for all x E ]O, a].
Then the function t ~ ux(0, t) belongs to L °° ( [0, to [) .
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We start with some preparations for the proof of Propositions 6.1
and 6.2. We shall put as before § = = t;x, and also X = ~ - 2 ,
Y = r~ - ~. Since X’ (x ) &#x3E; -1 if x &#x3E; 0, the curve t = X (x ) , is

given by Y = leX), 0 ~ X x b, where b = (a + X (a) - to)/2. We may
and shall assume that a is so small that leX) &#x3E; -~ if 0 ~ X x b. We
shall have to consider the following two cases:

case (1) (the case of Proposition 6.1)  1 if 0  x  a, so that

case (2) (the case of Proposition 6.2) X (x) = x + to if 0  x  a, so

Define D = {(X, Y) E Jae2, 0 ~ X ~ b, - 2  Y  J (X ) } in case (1)
and D = { (X, Y) E II~2, - ~  X ~ b, - 2  Y  0} in case (2).

In case (2), we shall denote by u * a C~ extension of u to { (x , t ) E
Jae2, 0 ~ x -~- t  to + 2b, 0  t  x + to) . If y  -lor if the Dirichlet
condition is satisfied, we may and shall assume that u* is bounded; this
is possible since Lemmas A.1 (of Appendix A) and 3.1 show that u is
bounded below if 0 ~ -t + to + 2b and 0  t  x + to. In case

(1), we just put u * = u. Define a function K on D by the relation
Put Q(X) = X 

Q(X) = leX) if 0  X x b (so that Q(X) = 0 if 0  X  b in case

(2)). Finally define the function L on D by the relation L(X, Y) -
K(X, Y) dYe Because of (5.2), one can find Hi E C2 (~) such

that ~03BEH1 = g ( u ) and ~~H1 = 1 22~ - u~~ in A. Hence if H2(03BE, ~) =

H1(x, t) and K2 (~, r~) = K (X, Y), we obtain that H2 (~, r~) = H2 (r~, r~) +
K2(03BE, ~) if (03BE - ~, 03BE + ~) ~  and (03BE - t0 2, ~ - t0 2) E D. If we put w =
e-u/2 in A, we have

Put w (X, Y) = w (x, t), Z = We obtain from (6.1 ) that

where M(X, Y ) _ - 2 aY ( H2 ( Y + 2 , Y + ~)) + 4 K 2 ( X , Y ) . Notice that
+ 2 ~ Y + 2 )) = (g(u) -f- 2u~ - u~~)(0~ 2~’ + to) .

After these preliminaries, we are going to prove Proposition 6.1.
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Proof of Proposition 6.1. - First we are going to check the following:

Indeed, if F satisfies (2.17) (and I y I &#x3E; 1 or the Dirichlet boundary
condition is satisfied), we conclude (with the help of Lemma A.I (of
Appendix A) and of Lemma 3.1) that g (u) is bounded if 0  t  X(x)
and + 2b - t, and (6.3) is then obvious. On the other hand, if
F satisfies (2.10) and y = -1, we can write with the help of Lemma A.2
(2) of Appendix A that + s)1 when
(x, t ) E A , where

Since, by Theorem 2.4, follows that
~ &#x3E; (1 - 8) (x - s) if 0 x s  x and (x, t) E A , and (6.3) follows easily.

Define r(X, Y) = if (X, Y) E D. It follows from (6.2) that
+ rMZ = 0 in D. Using (6.3), we see that there exists

03C9 &#x3E; 0 such that 1 r(X,Y)  w if (X, Y) e D. Define S(X, Y) = 
J(X)Y d r(X,) when (X, Y) E D. Notice for later use that ?(X, Y)  wY if
(X, Y) e D; indeed in D and S(X, 7(X)) = Define
D = {(X, S(X, Y)) E (X, Y) e D~. Put S = Y), U (X, S) =
Z (X, Y). It follows easily from (6.2) that

where q(X, S) _ -(r2M)(X, Y). Notice that

Fix xo E ]o, a[. Since  1, it follows by standard arguments
(already used in the proof of (6.1) of [3]) that, near xo , t = x (x) is the
blow-up curve of u considered as a solution of a Cauchy problem for the
equation Du = F(u) with initial data on {(y, x (xo) - 8) E (R+)2, y -

 S + ~}, where 8 &#x3E; 0 is small and 8 &#x3E; 0 is small with respect to 8.
Put, as in section 4 of [3], t) = u (xo + X (xo) + + 2 ln ~,, and
define t ) = In ~~, where r = X/(xo). Now, one has in particular

-1 ) --~ -1) if 2 and ~, ~ 0. Actually this
follows at once from the results of Sections 4,5,6 of [3], in particular
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from the analogue of (6.3) of [3] for xo &#x3E; 0 (which corresponds to (7.4)
of [1]). Hence

that is

Hence if we put, for 0  X  b,

it follows that leX) - ~,) ~ p (X ) if 0  X x b and ~, ~ 0.
Using this, it is not hard to check that

Let us complete the proof of Proposition 6.1 when either I y &#x3E; 1 or the

Dirichlet condition is imposed. Using Proposition 5.2, we obtain that for
some C, m, s &#x3E; 0, q(X, S) &#x3E; Y &#x3E; S2 if (X, S) e D and S &#x3E; -s. We

may and shall assume that 8, b are so small that &#x3E; -8 &#x3E; - ~ if
0  X ~ b. Put D~ = {(X, S) E D, S &#x3E; -~ { . Let ~ (X, S) be such that

We are going to check that

by adapting a standard comparison argument (used, e.g., in Theorem
9.2.1 of [5]). First we have if (X, S) E D£ and X &#x3E; 0:
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because both sides have the same first derivative with respect to S,
and are equal if S = Let us first check that ( as ~ ) (X, S)  0 if

(X, S) E Dc and ~&#x3E; 0. This is true if S = so fix X and put
Ex = {S, (X, S) E D,, (~S~)(X, ~)  0 for all a E [S, c~J(X)]~. Assume
that there exists So with (X, So) e Dc and So / Ex, and let S* be the
largest S e [So, such that (~S~)(X, S) = 0. Since ~’(X, J(X)) _
0, we have ~ (X, S*) &#x3E; 0. But (6.7) then shows that S*) &#x3E; 0, so
S* is a local minimum of the function S H ~ (X, S), which contradicts
the fact that ( as ~ ) (X , S)  0 if S E ] S* , J (X ) ] . This contradiction shows

&#x3E; 0 if (X, S) e Dc and X &#x3E; 0. Likewise U (X , S) &#x3E; 0 if

(X, S) E Dc and X &#x3E; 0, so the right-hand side of (6.10) is ~ 0. Hence
it follows from (6.10) that ~S ( ~ )  0 if (X, S) e D£ and X &#x3E; 0. Since

~ (X, S) -~ 1 as S ~ (6.9) follows at once.
Now (6.7), (6.8) can be solved explicitly. Put a = !(1 + 1 + 4m),

f3 = 2 ( 1 - 1 -~ 4m ) . Then is a fundamental system of
solutions of (6.7) and a simple computation shows that

Notice that a &#x3E; 1 and that f3  0. Assume that Proposition 6.1 is false, so
that one can find xk -~ 0 with X’ (xk ) &#x3E; -1 + co for some co &#x3E; 0 and all

clear that there exists 8 &#x3E; 0 such that 2014~ for all k. Now choose

So such that -s  So  if 0 ~ X ~ b. Let D -~ D: (X, S) )-~
(X, Y(X, S)) be the inverse diffeomorphism of (X, Y) H (X, S(X, Y))
and put Yk = Y(Xk, So). It is easily checked that one can find 81 &#x3E; 0 such
that Yk  -03B41 for all k. Passing to a subsequence if necessary, we may
and shall assume that there exists Yo E [- 2 , -81] such that Yk ~ Yo. By
(6.11), we obtain that ~(Xk, So) -~ whence U(Xk, So) -~ -f-oo by
(6.9). It follows that Z(Xk, Yk) --~ +00, and so w(Xk, Yk) -~ -I-oo. This
contradiction proves Proposition 6.1 when either I y &#x3E; 1 or the Dirichlet

condition is imposed.
Let us now complete the proof of Proposition 6.1 when y = -1.

Assuming as we may that b is small and using Proposition 5.2, we
see that one can find C, m , s &#x3E; 0 such that q(X, S) &#x3E; C(Y2ln ~Y‘)-1 &#x3E;
m (S2 ln S ) -1 and Y ~  1, S ~  1 if (X, S) E D and S &#x3E; -t:o Once
more, we may and shall assume that s, b are so small that &#x3E; -s &#x3E;

-~ if 0 ~ X ~ b, and put D~ _ { (X, S) E D, S &#x3E; -~}. Let ~ (X, S) be
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such that

if (X, S) E DF and X &#x3E; 0, and such that (6.8) holds. Then (6.9) still

holds with the same proof. The following lemma will be used to provide
something to replace (6.11 ) in the present case.

LEMMA 6.1. - One can find a fundamental system {~l, ~’2} of solu-
tions of (6.12) such that, S  0,

Lemma 6.1 is proved in Appendix B. Using Lemma 6.1 and taking
(6.8) into account, we obtain that

where

when (X, S) E DE and X &#x3E; 0, S &#x3E; - 2 .
We can now complete the proof of Proposition 6.1 when y = -1. If

this proposition was false, we could find xk ~ 0 with x’ (xk ) &#x3E; -1 + Co
for some co &#x3E; 0 and all Arguing as in the case Iyl &#x3E; 1 (or
the Dirichlet case), but with (6.11 ) replaced by (6.13), we again reach a
contradiction. The proof of Proposition 6.1 is complete. 0

Proof of Proposition 6.2. - Assume first that y = -1. If the function
t )-~ t ) does not belong to to [) , it follows (with the notations
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of Theorem 2.4) that to; indeed to, and if w(0) &#x3E; to,
the function t H belongs to But if to, it
follows from Theorem 2.4 that ex + to for some e E ]o, 1 [ if
x x a and that u(y, s) ~ +00 if s  and (y, s) -~ (x, But
this contradicts the fact that X (x) = x ~- to in the definition of ll. This
contradiction proves Proposition 6.2 when y = -1.
Assume now that &#x3E; 1 and that the function t i--~ t) does not

belong to Notice that (6.3) still holds in the present case;
indeed (2.17) implies that the function (x, t) ~ g(u*)(x, t) is bounded if
2 ’ 
We shall use the following result, which is proved in Appendix B.
LEMMA 6.2. - (6.2) has a fundamental system o, f’solutions {Z1 (X, Y),

Z2(X, Y)} which belong to C1 ({(X, Y) E II~2, - 2  X  b, y ~
0}) , for some ~ &#x3E; 0, and such that

where a = v v+1 and I = min(l, 2~ ).
Put as before w(X, Y) = e-u~x,t)/2. It follows from Proposition 5.2 that

and

where, for some Ci, C &#x3E; 0, C and !/2(~)! ~ if
-~  X  0. Recall that Z = and X) = 0 if - §  X 
0 in particular if j = 0,1. On the other hand, we may write Z(X, Y) =

Y), and so X) = 
X) if j = 0,1. It then follows from (6.15) and from Lemma 6.2 that,
in particular, ~(~) = -/i(~)~ + f3(X), where !/3(X)! ~ 
Hence A2(0) = 0, and since A2 e C’ near 0, we have A~(0) =

~- Therefore /i(X) exists ; since /t (X) ~ C,, we also
have limX~0 f1(X)  Ci. Hence A’2(0)  0, and therefore  0 if
Xo &#x3E; 0 is close to 0. Since (6.3) still holds in the present situation, it
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follows that w (Xo, Y) ~ -~ as Y ~ 0, which is of course impossible.
This contradiction proves Proposition 6.2 when |03B3| &#x3E; 1.

Finally let us prove Proposition 6.2 when the boundary condition is the
Dirichlet condition. The proof is identical with that of the case I y I &#x3E; 1,
with now a = 1, l = 1, f l (X ) = 1; actually (5.30) can be used to prove
the analogue of (6.15) for aY iu (X, X) since Lemma 6.2 still holds with
the same proof for these values of a, l. The proof of Proposition 6.2 is
complete. a

We can now prove Theorem 2.5.

Proof of Theorem 2.5. - Assume that C and put to = 
It follows from Theorem 2.4 that the function t )-~ ut (0, t) does not
belong to Loo([O, to[). Proposition 6.1 (with x - ~p) then implies that
cp’ (x) ~ -1 as x ~ 0. This implies Theorem 2.5. D

We now prove Theorem 2.8 with the help of Proposition 6.1. Until the
end of this section, we shall suppose that the assumptions of Theorem 2.8
are satisfied.

If (x, t) E (I~+)2, let K- (x, t) = {(y, s) E (II~+)2, s  t, ~  t - s }
be the backward characteristic cone with vertex (x, t ) , limited to 
(cf. Section 3). Recall that if U is an open subset of (R+)~, one says
that U is an influence domain if (x, t) implies that K - (x , t) C U.
The union U* of all influence domains where a unique C3 solution of
(2.1), (2.2) (or (2.12)), (2.3) exists is the largest influence domain with
such a property. If 0, one can find t &#x3E; 0 such that {x } x [0, t] c T~l * .
Put 03C8(x) = sup{t &#x3E; 0, {x} x [0, t] c U*}. If 03C8 ~ +00, then 1/f is always

and z/r~ (x 1 ) - ~ (x2 ) (  ( x - x2 ~ for all xi , x2 &#x3E; 0; in that case we
shall put E = { (x , t) E = ~ (x ) } . Actually, with the notations
introduced in Section 2, we have ~l * = S2, 1/r~ = cp, as will follow from
Proposition 6.3 under the assumptions of Theorem 2.8 (and the same
follows from Theorems 2.3 and 2.4 y  1). We shall prove
the following result, which will help us to show that Proposition 6.1 is
applicable with X = 1/f .

PROPOSITION 6.3. - Let the assumptions on F, 03C81 and the

boundary condition be as in Theorem 2.8. Assume that ~% fl -I-oo. If
xo &#x3E; 0, there exists an open neighborhood U of xo in such that

1/f E C 1 (U) and ~’ ~  1 in U. Moreover, if x E U, u(y, s) -~ -1-0o if
s  ~c/r~ (y) and (y, s) --~ (x, 1/r~ (x)).



808 P. GODIN / Ann. Inst. Henri Poincare 17 (2000) 779-815

Proof of Proposition 6.3. - If P = (xl , tl ) E (II~+)2, define Cl (P),
Cr(P) as in Section 6 of [ 3 ], namely write Ci (P) = f (x , t ) E 

for the backward half characteristics with positive and negative slope
through P. Notice that if Po = (xo, and if P = (x, t) E
C* (Po) n ~7, where * = I or r, then the closed interval with end points P
and Po is contained 

First case. Assume that C* ( Po ) n ~ _ ~ if * = I and also if * = r. Then
the following holds:

one can find an open neighborhood U of xo in such that

1/f and ~’ ~  1 in U. Moreover, if

and

Actually the proof of (6.16) is the same as that of (6.1) of [3], so we may
omit the details. Hence Proposition 6.3 holds if the first case occurs.

Second case. Assume that one can find Pi E Cr(Po) Put

E+ = {x &#x3E; xo, (x, ~ (xo) - (x - E+ ; 0. Put also x* =
supE+, P * = (x * , ~ (xo ) - (x * - xo ) ) . Then P* so t ( P * ) &#x3E; 0 and

~c/f (x ) _ ~ (xo ) - (x - xo ) if xo x x * . It is clear that Ci (P*) n E =
0 = Cr ( P * ) so by the first case, ~ E C~ 

1 close to x * and !~~ (  1

close to x*. This contradiction shows that the second case is impossible.
Third case. Assume that one can find P2 E Cl ( Po) n ~ . Put E- =

{x  xo, (x, ~ (xo) + (x - xo)) E- ~ 0. Put x** = inf E-, P** =
(x ** , + (x ** - xo ) ) . If x ** &#x3E; 0, one can repeat the reasoning of
the second case (with Cr replaced by Cl ) to conclude that this situation
cannot happen. So we must have x** = 0. Let us put to = ~ (xo) - xo, so

= to + x if x x xo. Proposition 6.2 shows that t h~ ux (0, t)
belongs to Then it follows from Proposition 5.1 that u e

If we put as before w(X, Y) = e-u~x,t)/2~ Z = we are

going to check that

Since u E C (Dto ), it is clear that (6.17) holds if X = 0. To prove (6.17), it
is therefore sufficient to show that Zx E L°°([o, b] x [- 2 , 0[). To achieve
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this, put

with K, M as in (6.2). Using (6.2), we see that

while

where Yo E C2([o, b]). Using the fact that u E we obtain
in particular that A, Ax E L°°([o, b] x [- 2 , 0[). But then, standard
estimates (see, e.g., Lemma 4.1, p. 54 of [4]) show that y E L°° ([o, b] x

[- 2 , 0[), and differentiation of (6.18) with respect to X shows that yX E
L°°([o, b] x [- 2 , 0[). Hence Zx E Loo([O,b] x [- 2 , 0[), and (6.17)
follows. From (6.17) and from the fact that u E it follows that
u is bounded above when x + t  to + 2~ and t  x + to. Now ut + u x
is bounded if 0 ~ x  xo + and t = 0. Since Du = F (u ) &#x3E; - Co
if x -f- t  xo + ~ (xo) and t  x + to, it is therefore clear that ut + ux is
bounded below if x + t  xo -~- ~ (xo) and t  x + to. But then we conclude
that u is bounded below when x -E- t  xo + and t  x + to, since
we know that u is bounded if x = 0 and 0  t  to. But then u is bounded
when x ~-- t  to + 2~ and t  x + to if £  xo, and an application of
Theorem A. 1 of Appendix A shows that u can be extended as a solution
of (2.1), (2.2) (or (2.1), (2.12)) to a neighborhood of (0, to) in (JR+)2,
which contradicts the fact that P** e This contradiction shows that
the third case is impossible. Summing up, only the first case is possible,
and this proves Proposition 6.3. a

We can now prove Theorem 2.8.

Proof of Theorem 2.8. - Proposition 6.3 immediately implies Theo-
rem 2.8 when x &#x3E; 0 if we take cp = 03C8. Now assume first that the func-
tion t ~ ux(0, t) does not belong to If we take cp = X ,
Theorem 2.8 then follows at once from Proposition 6.1. (If y  -1,
u(0, t) -~ +00 as t and u~ is bounded below, so u (x, t) ~ +00
if (x , t ) -~ (0, ~p (o) ) ). If now the function t H ux (o, t) belongs to

L °° ([o, to [), we can repeat some arguments of the proof of Proposi-
tion 6.3. It follows from Proposition 5.1 that u e C2(Dto). Putting, as
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before, w(X, Y) = e-u~x,t)/2~ Z = and using arguments simi- .
lar to those which lead to (6.17), we easily conclude that for some
03B4, ~ &#x3E; 0, Z(X, Y)  03B4 if 0  X  ~ and -t0 2  Y  J(X), where as be-
fore Y = 1 (X) corresponds to t = This contradicts the fact that

u(y, s) ~ +00 as (y, s) ~ (x, if x &#x3E; 0 is small. Hence the func-

tion t ~ ux(0, t) cannot belong to to[), and we have already seen
in the beginning of this proof that Theorem 2.8 then follows. a

APPENDIX A

We first collect a number of useful results from [3].

LEMMA A.1 (Lemma 3.1. of [3]). - Let DR, U be as in Section 3.

Assume that w E n DR ), F E C(U n DR ), and that the following
= F in U n DR, wx + y wt = 0 if x = 0 and 0  t 
R), where y E ] - oo, 1 [, and w = wt = if 0  x  R

and t = o. Then the following holds: if Co &#x3E; 0 and F &#x3E; -Co, one can find
C &#x3E; 0 (depending on ~l , R, Co, but not on F) such that w &#x3E; -C in
U n DR.

The following estimates have also been used (cf. [3]).

LEMMA A.2. - Assume that F E C 1 (I~) satisfies (2.7)( 1 ) and (2.7)(2),
that y = -1, that ~~ ~ = 0, 1, and that (2.4), (2.5) hold.
Then there exist:

(a) R+ - ]0, +oo] such that or = 

(b) u E where Q = {(x, t) E (I~+)2, t  such that u is a

solution of (2.1 ), (2.2), (2.3) in Q.
C I1g+, denote by d (x, t) the distance from (x, t) to the graph of

(p. For any R &#x3E; 0, there exist C, ~ &#x3E; 0 such that:

Proof of Lemma A.2. - ( 1 ) can be proved as Lemma 4.1 of [3], and (2)
as Lemma 4.2 of [3]. As for (3), it can be proved as Lemma 4.9 of [3],
but with Lemma 4.7 of [3] replaced by (1). We may omit the details. 0

Assume that to &#x3E; 0 and f3 &#x3E; 0. If £ put D~ = { (x , t ) e

(II~~)2, x &#x3E; 0, 0  t  to - ~, x ~-- t  to + D = DE. In the

proof of Proposition 6.3, we have used the following standard result.
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THEOREM A.1. - (I) Assume that F E C2 and let

satisfy the following conditions:

where y ~ l. If u E L°°(D), one can find an open neighborhood V of
(0, to) in and u E C3(V) with

such that u = u in V n D.

(II) The same result holds if (A.2) is replaced by

and (A.4) by

Proof of Theorem A.1. - Representing u in D by formulas of type (3.4),
(3.5), we easily conclude that u e C3 (D) . It then suffices to find an open
neighborhood W of (0, to ) in { (x , t ) E (II~+ ) 2 , t &#x3E; to { and u * e C3(W)
such that []u* = F(u*) if (x, t) E W, = at u if j = 0,1, (x, t) E W
and t = to, and such that ux + 03B3u*t = 0 if x = 0 and (0, t) E W in
case (A.2) holds, whereas u* = 0 if x = 0 and (0, t) e W in case (A.5)
holds. But the existence of W and u* is standard and follows, e.g., by
the arguments of the proof of Theorem 2.1 of [3]. We may omit the de-
tails. D

, 

APPENDIX B

Proof of Lemma 6.1. - We shall use ideas and results of Chapter XI
of [4]. Assume that ~ (S) satisfies (6.12) when - 2  S  0. Put -S =

t -1 (hence t &#x3E; 2) , ~ ( S) = pes) = ~ +- m . Then v"(s) +
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P (s) v (s) = 0 if s &#x3E; ln 2. Let us use a so-called Liouville transformation:
take a new variable a such that d03C3 ds = P1/2(s) and a(ln2) = 1, and write
z(c~) = p1~4(s)v(s). Then

where B E +oo[) and ~,t3 (~ ) ~  ~ . Now (B .1 ) has a fundamental
system of solutions {~1,~2} such that 

if 1 and j = 0, 1. Actually (B.2) follows from Corollary 9.2 of
Chapter XI of [4] except for the fact that the right-hand sides of (B.2)
are not given there. For the sake of completeness, we very briefly give
some details. Put v (a) = w (a) = and assume in the

rest of the proof that 1. Then we obtain with the help of (B .1 ) that

(B.3) can be reduced to the system of integral equations

Lemma 9.1 of Chapter XI of [4] shows that w(a) has a finite limit
as a - We impose the conditions veT) = 0, weT) =

1, where T is large; then it follows from the proof of Lemma 9.1
of Chapter XI of [4] that 0. Put v2 - w2 =

w / w (-I-oo) . The proof of Lemma 9.1 of chapter XI of [4] now yields
that w2 (cr) - 1 ~ ~ and since v2 (~) = e2~ w2 (cr), we easily obtain
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that ju2(r) - ~c~! ~ C~. If we define

(cf. [4]), simple calculations show that (vl , is a solution to (B.3) and

that v 1 (cr ) - 1 ~  2 and 
z2 0~ = v2 (c~ ), (B.2) follows easily. Now it is not hard to check that
for some Ci, C2 &#x3E; 0, one has C1 C C2 if s &#x3E; ln 2. If we use

this and define = P-1~4(s)z~ (cr), ~~ (S) = = 1, 2,
where ci, c2 are suitable strictly positive constants, Lemma 6.1 follows
from (B.2) after some straightforward computations. D

Proof of Lemma 6. 2. - Put

Straightforward computations using Proposition 5.2 show that, for some
so,

if - 2  X  b and s &#x3E; so, with l = min ( 1, 2 Y Y ± 1 ) . We shall make use of
the following result.

LEMMA B .1. - One can find a fundamental system of solutions { vl (X,
s), v2(X, s)} of (B.5) such that vl, v2 E C1 ({(X, s) E - 2  X 
b, s &#x3E; so } ) and
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Lemma 6.2 easily follows from Lemma B.I if we put Zk (X , Y ) =

s ) , k = 0,1. Hence it remains to prove Lemma B .1.

Proof of Lemma B. l. - The proof follows the same lines as in

Lemma 6.1. Put veX, s) = s ) . (B.5) can be rewritten as

Put

where A(X, s) = 1/p(X, s), B(X, s) = p(X, + g2)(X, s). In

the rest of this proof we shall denote by C various strictly positive
constants independent of X. Notice that B ( X , s ) ~  s ) ~ +

s) ~ + ( A(X, s) - 1 ~ ~ We may study (B.7) along the same
lines as (B.3), the only additional difficulty being the presence of X. First
we rewrite (B.7) as a system of integral equations

Arguing as in the proof of Lemma 6.1, we easily obtain that w ( X , s )
has a limit w (X, +00), uniformly in X e [-~, b], as s ~ +00. More-
over, Iw(X, s) - Ce-ls. We take T large, w (X, T ) _

1, v(X, F) EE 0. Then s) - 1~  2 for all X E [- 2, b] if s is

large. In a similar way, it also follows from (B.8) that wx(X, s) has
a limit x(X) as s ~ +00, and that moreover X (X ) ( 
Ce-ls . Hence the function X h~ w (X, belongs to C 1 ([- 2 , b]).
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Put V2(X, s) = V(X, S)jW(X, +cXJ) , w2 (X, s) = w (X , s)jw(X, +cXJ) ,
VI 16’i, S) - e2À0152 A(x~~) s)~ W (x~ s) = w2vL-1 (x~ s). Ar-

v2 2 ’ v2

guing as in the proof of Lemma 6.1, we easily obtain the estimates
~2(~)-l!~Ce~,!~(M- e2Às C,e(2~,-l)S~ ~y l 16’i , s) - 11 Î IW2(X, s) - 11 ~ Ce , IV2(X, s)- 2~. 1 ~ Ce , IVI (X, s) - 
Ce-ls, Ce-(2À+l)s, from which Lemma B.l easily fol-
lows. D
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