@article{AIHPC_2001__18_2_135_0, author = {Sirakov, Boyan}, title = {Symmetry for exterior elliptic problems and two conjectures in potential theory}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {135--156}, publisher = {Elsevier}, volume = {18}, number = {2}, year = {2001}, mrnumber = {1808026}, zbl = {0997.35014}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2001__18_2_135_0/} }
TY - JOUR AU - Sirakov, Boyan TI - Symmetry for exterior elliptic problems and two conjectures in potential theory JO - Annales de l'I.H.P. Analyse non linéaire PY - 2001 SP - 135 EP - 156 VL - 18 IS - 2 PB - Elsevier UR - http://archive.numdam.org/item/AIHPC_2001__18_2_135_0/ LA - en ID - AIHPC_2001__18_2_135_0 ER -
Sirakov, Boyan. Symmetry for exterior elliptic problems and two conjectures in potential theory. Annales de l'I.H.P. Analyse non linéaire, Volume 18 (2001) no. 2, pp. 135-156. http://archive.numdam.org/item/AIHPC_2001__18_2_135_0/
[1] A symmetry theorem for condensers, Math. Meth. Appl. Sc. 15 (1992) 315-320. | MR | Zbl
,[2] Uniqueness of Hill's spherical vortex, Arch. Rat. Mech. Anal. 92 (1986) 91-119. | MR | Zbl
, ,[3] Radial symmetry for overdetermined elliptic problems in exterior domains, Arch. Rat. Mech. Anal. 143 (1998) 195-206. | MR | Zbl
, ,[4] On the method of moving planes and the sliding method, Bull. Soc. Brazil Mat. Nova Ser. 22 (1991) 1-37. | MR | Zbl
, ,[5] Non-negative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric, Comm. Partial Differential Equations 14 (8&9) (1989) 1091-1100. | MR | Zbl
, ,[6] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 6 (1981) 883-901. | MR | Zbl
, , ,[7] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. | MR | Zbl
, ,[8] Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations 16 (1991) 585-615. | MR | Zbl
,[9] A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl. 78 (4) (1999) 769-789. | MR | Zbl
, , ,[10] Reichel W., Radial symmetry by moving planes for semilinear elliptic BVP's on annuli and other non-convex domains, in: Bandle C. et al. (Eds.), Progress in PDE's: Elliptic and Parabolic Problems, Pitman Res. Notes, Vol. 325, pp. 164-182. | Zbl
[11] Radial symmetry for elliptic boundary-value problems on exterior domains, Arch. Rat. Mech. Anal. 137 (1997) 381-394. | MR | Zbl
,[12] Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains, Z. Anal. Anwendungen 15 (1996) 619-635. | MR | Zbl
,[13] A symmetry theorem in potential theory, Arch. Rat. Mech. Anal. 43 (1971) 304-318. | MR | Zbl
,[14] Symmetry of ground states of quasilinear elliptic equations, Arch. Rat. Mech. Anal. 148 (4) (1999) 265-290. | MR | Zbl
, ,[15] Symmetry theorems for some overdetermined boundary-value problems on ring domains, Z. Angew. Math. Phys. 45 (1994) 556-579. | MR | Zbl
, , ,[16] A strong maximum principle for some quasilinear elliptic equations, Appl. Math. and Optimisation 12 (1984) 191-202. | MR | Zbl
,