An example of non-convex minimization and an application to Newton's problem of the body of least resistance
Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 2, pp. 179-198.
@article{AIHPC_2001__18_2_179_0,
     author = {Lachand-Robert, T. and Peletier, M. A.},
     title = {An example of non-convex minimization and an application to {Newton's} problem of the body of least resistance},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {179--198},
     publisher = {Elsevier},
     volume = {18},
     number = {2},
     year = {2001},
     mrnumber = {1808028},
     zbl = {0993.49002},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_2001__18_2_179_0/}
}
TY  - JOUR
AU  - Lachand-Robert, T.
AU  - Peletier, M. A.
TI  - An example of non-convex minimization and an application to Newton's problem of the body of least resistance
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2001
SP  - 179
EP  - 198
VL  - 18
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/item/AIHPC_2001__18_2_179_0/
LA  - en
ID  - AIHPC_2001__18_2_179_0
ER  - 
%0 Journal Article
%A Lachand-Robert, T.
%A Peletier, M. A.
%T An example of non-convex minimization and an application to Newton's problem of the body of least resistance
%J Annales de l'I.H.P. Analyse non linéaire
%D 2001
%P 179-198
%V 18
%N 2
%I Elsevier
%U http://archive.numdam.org/item/AIHPC_2001__18_2_179_0/
%G en
%F AIHPC_2001__18_2_179_0
Lachand-Robert, T.; Peletier, M. A. An example of non-convex minimization and an application to Newton's problem of the body of least resistance. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 2, pp. 179-198. http://archive.numdam.org/item/AIHPC_2001__18_2_179_0/

[1] Brock F., Ferone V., Kawohl B., A symmetry problem in the calculus of variations, Calc. Var. Partial Differential Equations 4 (1996) 593-599. | MR | Zbl

[2] Buttazzo G., Ferone V., Kawohl B., Minimum problems over sets of concave functions and related questions, Math. Nachrichten 173 (1993) 71-89. | MR | Zbl

[3] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Studies in Applied Mathematics, CRC Press, 1992. | MR | Zbl

[4] Goldstine H.H., A History of the Calculus of Variations from the 17th through the 19th Century, Springer-Verlag, Heidelberg, 1980. | MR | Zbl

[5] Guasoni P., Problemi di ottimizzazione di forma su classi di insiemi convessi, Tesi di Laurea, Pisa, 1996.

[6] Benoist J., Hiriart-Urruty J.B., What is the subdifferential of the closed convex hull of a function?, SIAM J. Math. Anal. 27 (6) (1996) 1661-1679. | MR | Zbl

[7] Lachand-Robert T., Peletier M.A., Extremal points of a functional on the set of convex functions, Proc. Amer. Math. Soc. 127 (1999) 1723-1727. | MR | Zbl

[8] Lachand-Robert T., Peletier M.A., Newton's problem of the body of minimal resistance in the class of convex developable functions, in preparation.

[9] Newton I., Philosophiae Naturalis Principia Mathematica, 1686. | Zbl

[10] Reed M., Simon B., Methods of Mathematical Physics, Vol. I, Academic Press, 1980. | MR

[11] Rockafellar R.T., Convex Analysis, Princeton University Press, 1970. | MR | Zbl

[12] Schneider R., Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993. | Zbl

[13] Zamfirescu T., Baire category in convexity, Atti Sem. Mat. Fis. Univ. Modena 39 (1991) 139-164. | MR | Zbl

[14] Zamfirescu T., Nearly all convex bodies are smooth and strictly convex, Monatsh. Math. 103 (1987) 57-62. | MR | Zbl