@article{AIHPC_2001__18_2_179_0, author = {Lachand-Robert, T. and Peletier, M. A.}, title = {An example of non-convex minimization and an application to {Newton's} problem of the body of least resistance}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {179--198}, publisher = {Elsevier}, volume = {18}, number = {2}, year = {2001}, mrnumber = {1808028}, zbl = {0993.49002}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2001__18_2_179_0/} }
TY - JOUR AU - Lachand-Robert, T. AU - Peletier, M. A. TI - An example of non-convex minimization and an application to Newton's problem of the body of least resistance JO - Annales de l'I.H.P. Analyse non linéaire PY - 2001 SP - 179 EP - 198 VL - 18 IS - 2 PB - Elsevier UR - http://archive.numdam.org/item/AIHPC_2001__18_2_179_0/ LA - en ID - AIHPC_2001__18_2_179_0 ER -
%0 Journal Article %A Lachand-Robert, T. %A Peletier, M. A. %T An example of non-convex minimization and an application to Newton's problem of the body of least resistance %J Annales de l'I.H.P. Analyse non linéaire %D 2001 %P 179-198 %V 18 %N 2 %I Elsevier %U http://archive.numdam.org/item/AIHPC_2001__18_2_179_0/ %G en %F AIHPC_2001__18_2_179_0
Lachand-Robert, T.; Peletier, M. A. An example of non-convex minimization and an application to Newton's problem of the body of least resistance. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 2, pp. 179-198. http://archive.numdam.org/item/AIHPC_2001__18_2_179_0/
[1] A symmetry problem in the calculus of variations, Calc. Var. Partial Differential Equations 4 (1996) 593-599. | MR | Zbl
, , ,[2] Minimum problems over sets of concave functions and related questions, Math. Nachrichten 173 (1993) 71-89. | MR | Zbl
, , ,[3] Measure Theory and Fine Properties of Functions, Studies in Applied Mathematics, CRC Press, 1992. | MR | Zbl
, ,[4] A History of the Calculus of Variations from the 17th through the 19th Century, Springer-Verlag, Heidelberg, 1980. | MR | Zbl
,[5] Problemi di ottimizzazione di forma su classi di insiemi convessi, Tesi di Laurea, Pisa, 1996.
,[6] What is the subdifferential of the closed convex hull of a function?, SIAM J. Math. Anal. 27 (6) (1996) 1661-1679. | MR | Zbl
, ,[7] Extremal points of a functional on the set of convex functions, Proc. Amer. Math. Soc. 127 (1999) 1723-1727. | MR | Zbl
, ,[8] Lachand-Robert T., Peletier M.A., Newton's problem of the body of minimal resistance in the class of convex developable functions, in preparation.
[9] Philosophiae Naturalis Principia Mathematica, 1686. | Zbl
,[10] Methods of Mathematical Physics, Vol. I, Academic Press, 1980. | MR
, ,[11] Convex Analysis, Princeton University Press, 1970. | MR | Zbl
,[12] Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993. | Zbl
,[13] Baire category in convexity, Atti Sem. Mat. Fis. Univ. Modena 39 (1991) 139-164. | MR | Zbl
,[14] Nearly all convex bodies are smooth and strictly convex, Monatsh. Math. 103 (1987) 57-62. | MR | Zbl
,