A priori estimates for solutions of fully nonlinear special lagrangian equations
Annales de l'I.H.P. Analyse non linéaire, Volume 18 (2001) no. 2, p. 261-270
@article{AIHPC_2001__18_2_261_0,
     author = {Yuan, Yu},
     title = {A priori estimates for solutions of fully nonlinear special lagrangian equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {18},
     number = {2},
     year = {2001},
     pages = {261-270},
     zbl = {0988.35058},
     mrnumber = {1808031},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2001__18_2_261_0}
}
Yuan, Yu. A priori estimates for solutions of fully nonlinear special lagrangian equations. Annales de l'I.H.P. Analyse non linéaire, Volume 18 (2001) no. 2, pp. 261-270. http://www.numdam.org/item/AIHPC_2001__18_2_261_0/

[1] Caffarelli L.A, Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math. 130 (1989) 189-213. | MR 1005611 | Zbl 0692.35017

[2] Caffarelli L.A, Cabré X, Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, 43, American Mathematical Society, Providence, RI, 1995. | MR 1351007 | Zbl 0834.35002

[3] Caffarelli L.A, Crandall M.G, Kocan M, Świech A, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49 (1996) 365-397. | MR 1376656 | Zbl 0854.35032

[4] Caffarelli L.A, Nirenberg L, Spruck J, The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985) 261-301. | MR 806416 | Zbl 0654.35031

[5] Caffarelli L.A., Yuan Y., A Priori estimates for solutions of fully nonlinear equations with convex level set, Indiana Univ. Math. J., to appear. | MR 1369586 | Zbl 0965.35045

[6] Calabi E, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom. 1 (1967) 111-125. | MR 233294 | Zbl 0171.20504

[7] Chiarenza F, Frasca M, Longo P, W2,p solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993) 841-853. | MR 1088476 | Zbl 0818.35023

[8] Evans L.C, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (3) (1982) 333-363. | MR 649348 | Zbl 0469.35022

[9] Gilbarg D, Trudinger N.S, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. | MR 737190 | Zbl 0562.35001

[10] Harvey R, Lawson H.B, Calibrated geometry, Acta Math. 148 (1982) 47-157. | MR 666108 | Zbl 0584.53021

[11] Huang Q.-B., On the regularity of solutions to fully nonlinear elliptic equations via Liouville property, Proc. Amer. Math. Soc., to appear. | MR 1896027 | Zbl 1011.35047

[12] Krylov N.V, Boundedly nonhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat. 46 (3) (1982) 487-523, in Russian; English translation in Math. USSR Izv. 20 (1983) 459-492. | Zbl 0529.35026

[13] Simon L, Lectures on Geometric Measure Theory, Proc. C. M. A., Austr. Nat. Univ., 3, 1983. | MR 756417 | Zbl 0546.49019