@article{AIHPC_2001__18_4_403_0, author = {Mora, Maria Giovanna and Morini, Massimiliano}, title = {Local calibrations for minimizers of the {Mumford-Shah} functional with a regular discontinuity set}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {403--436}, publisher = {Elsevier}, volume = {18}, number = {4}, year = {2001}, zbl = {1052.49018}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2001__18_4_403_0/} }
TY - JOUR AU - Mora, Maria Giovanna AU - Morini, Massimiliano TI - Local calibrations for minimizers of the Mumford-Shah functional with a regular discontinuity set JO - Annales de l'I.H.P. Analyse non linéaire PY - 2001 SP - 403 EP - 436 VL - 18 IS - 4 PB - Elsevier UR - http://archive.numdam.org/item/AIHPC_2001__18_4_403_0/ LA - en ID - AIHPC_2001__18_4_403_0 ER -
%0 Journal Article %A Mora, Maria Giovanna %A Morini, Massimiliano %T Local calibrations for minimizers of the Mumford-Shah functional with a regular discontinuity set %J Annales de l'I.H.P. Analyse non linéaire %D 2001 %P 403-436 %V 18 %N 4 %I Elsevier %U http://archive.numdam.org/item/AIHPC_2001__18_4_403_0/ %G en %F AIHPC_2001__18_4_403_0
Mora, Maria Giovanna; Morini, Massimiliano. Local calibrations for minimizers of the Mumford-Shah functional with a regular discontinuity set. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 4, pp. 403-436. http://archive.numdam.org/item/AIHPC_2001__18_4_403_0/
[1] The calibration method for the Mumford-Shah functional, Preprint SISSA, Trieste, 1998.
, , ,[2] A compactness theorem for a new class of variational problems, Boll. Un. Mat. It. 3-B (1989) 857-881. | MR | Zbl
,[3] Functions of Bounded Variation and Free-Discontinuity Problems, Oxford University Press, Oxford, 2000. | MR | Zbl
, , ,[4] Riemannian Geometry - A Modern Introduction, Cambridge University Press, Cambridge, 1993. | Zbl
,[5] Local calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity set, J. Math. Pures Appl. 79 (2) (2000) 141-162. | Zbl
, , ,[6] Ordinary Differential Equations, Birkhäuser, Boston, 1982. | MR | Zbl
,[7] Partial Differential Equations, Springer-Verlag, New York, 1982. | MR | Zbl
,[8] Boundary detection by minimizing functionals, I, in: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, 1985.
, ,[9] Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 42 (1989) 577-685. | MR | Zbl
, ,