@article{AIHPC_2001__18_6_639_0, author = {Lops, F. A. and Maddalena, F and Solimini, S}, title = {H\"older continuity conditions for the solvability of {Dirichlet} problems involving functionals with free discontinuities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {639--673}, publisher = {Elsevier}, volume = {18}, number = {6}, year = {2001}, mrnumber = {1862638}, zbl = {1001.49018}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2001__18_6_639_0/} }
TY - JOUR AU - Lops, F. A. AU - Maddalena, F AU - Solimini, S TI - Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2001 SP - 639 EP - 673 VL - 18 IS - 6 PB - Elsevier UR - http://archive.numdam.org/item/AIHPC_2001__18_6_639_0/ LA - en ID - AIHPC_2001__18_6_639_0 ER -
%0 Journal Article %A Lops, F. A. %A Maddalena, F %A Solimini, S %T Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities %J Annales de l'I.H.P. Analyse non linéaire %D 2001 %P 639-673 %V 18 %N 6 %I Elsevier %U http://archive.numdam.org/item/AIHPC_2001__18_6_639_0/ %G en %F AIHPC_2001__18_6_639_0
Lops, F. A.; Maddalena, F; Solimini, S. Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 6, pp. 639-673. http://archive.numdam.org/item/AIHPC_2001__18_6_639_0/
[1] Compactness theorem for a special class of functions of bounded variation, Boll. Un. Mat. Ital. 3-B (1989) 857-881. | MR | Zbl
,[2] Existence theory for a new class of variational problems, Arch. Rat. Mech. Anal. 111 (1990) 291-322. | MR | Zbl
,[3] A new proof of the SBV compactness theorem, Calc. Var. 3 (1995) 127-137. | MR | Zbl
,[4] Partial regularity of free discontinuity sets, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (4) (1997) 39-62. | Numdam | MR | Zbl
, , ,[5] Existence theorem for a Dirichlet problem with free discontinuity set, Nonlinear Anal. 15 (1990) 661-667. | MR | Zbl
, ,[6] Une approche variationelle en traitement d'images: résultats d'existence et d'approximation, C. Rend. Acad. Sc. Paris, Série I 308 (1989) 549-554. | MR | Zbl
, , ,[7] A variational method in image segmentation: existence and approximation results, Acta Mat. 168 (1992) 89-151. | MR | Zbl
, , ,[8] On the singular set of minimizers of Mumford-Shah functional, J. Math. Pures Appl. 803 (1989) 549-554.
, ,[9] Uniform rectifiability and singular set, Annales de l'I.H.P. 13 (4) (1996) 383-443. | Numdam | MR | Zbl
, ,[10] Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. s. 8 82 (1988) 199-210. | MR | Zbl
, ,[11] Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal. 108 (1989) 195-218. | MR | Zbl
, , ,[12] Uniform rectifiability of image segmentation obtained by variational methods, J. Math. Pures Appl. 803 (1989) 549-554.
,[13] Propriété de régularité des contours d'une image segmentée, C. Rend. Acad. Sc. Paris, Série I 313 (1991) 573-578. | MR | Zbl
, ,[14] Geometric Measure Theory, Springer, Boston, 1969. | MR | Zbl
,[15] Variational Inequalities and Applications, Academic Press, Boston, 1980. | MR
, ,[16] Maddalena F., Solimini S., Concentration and flatness properties of the singular set of bisected balls, Ann. Scuola Norm. Sup. Pisa (to appear). | Numdam | MR | Zbl
[17] Maddalena F., Solimini S., Lower semicontinuity properties for functionals with free discontinuities (to appear). | MR | Zbl
[18] Variational Methods in Image Segmentation, Birkhäuser, Boston, 1994. | MR
, ,[19] Multiple integrals in the calculus of variations, Springer, Heidelberg, 1966. | MR | Zbl
,[20] Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. XLII-4 (1989). | MR | Zbl
, ,[21] Simplified excision techniques for Free Discontinuity Problems in several variables, J. Funct. Anal. 151 (1) (1997) 1-34. | MR | Zbl
,