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ABSTRACT. – We continue here our study of the thermodynamic limit for various models of
Quantum Chemistry. More specifically, we study the Hartree and the restricted Hartree model.
For the restricted Hartree model, we prove the existence of the thermodynamic limit for the
energy per unit volume. We also define a periodic problem associated to the Hartree model, and
we prove that it is well-posed. 2002 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous poursuivons dans cet article notre étude systématique de la limite
thermodynamique de divers modèles issus de la Chimie Quantique Moléculaire. Nous étudions
plus spécifiquement les modèles de Hartree et de Hartree restreint. Pour le modèle de Hartree
restreint, nous prouvons l’existence de la limite thermodynamique de l’énergie par unité de
volume. Nous définissons également un modèle périodique associé au modèle de Hartree, et
nous démontrons qu’il est bien posé. 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

We consider here the thermodynamic limit (or bulk limit) problem for some Hartree
type models, thereby continuing a long term work that we have begun in [11] with a
similar study in the setting of the Thomas–Fermi–von Weizsäcker type models. The
results we have obtained in that framework were summarized in [10], those we shall
obtain here have been announced in [12]. It is to be mentioned that we also consider
in [13] the same problem for the reduced Hartree–Fock and the Hartree–Fock models.
For the sake of consistency, we briefly recall now the motivations of our work. We also
say a few words on how this work interacts with other mathematical studies. And we
refer the reader to [11] for a more detailed introduction.

The present work, as well as our previous ones, finds its roots in many mathematical
studies devoted to the mathematical counterpart of problems of Statistical Mechanics.

E-mail address:catto@ceremade.dauphine.fr (I. Catto).
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Briefly speaking, the so-called thermodynamic limit problem consists of examining the
behaviour of models for a finite volume of matter when the volume under consideration
goes to infinity. Since the energy is an extensive thermodynamic quantity, it is expected
that the energy per unit volume goes to a finite limit when the volume goes to infinity.
It is also expected that the function representing the state of the matter goes also to a
limit in some sense. To fix the ideas, let us make precise these questions in the case of
an infinite crystal and in the setting of a model of the density functional theory. We shall
see extensions of this simplified setting later on.

Consider a finite number of nuclei, each nucleus being of unit charge and being located
at a pointk = (k1, k2, k3) of integral coordinates inR3, which is the center of a cubic unit
cellQk = {(x1, x2, x3) ∈ R3;−1

2 < xi − ki � 1
2, i = 1,2,3} (with the convention thatQ0

will be henceforth denoted byQ). The set of the positions of these nuclei is then a finite
subset	 of the set of all points of integral coordinates that isZ3 ⊂ R3. The union of all
cubic cells whose center is a point of	 is denoted by
(	); its volume is denoted by
|	|. Since each cell has unit volume and each nucleus is of unit charge,|	| is also the
number of nuclei and the total nuclear charge.

Suppose that for	 ⊂ Z3 fixed, we have a well-posed model for the ground state of
the neutral molecule consisting of|	| electrons and|	| nuclei located at the points
of 	. Let us denote byI	 the ground-state energy, and byρ	 the minimizing electronic
density.

Then, the question of the existence of the thermodynamic (or bulk) limit for the model
under consideration may be stated as follows:

(i) Does there exist a limit for the energy per unit volume1
|	|I	 when |	| goes to

infinity?
(ii) Does the minimizing densityρ	 approach a limitρ∞ (in a sense to be made

precise later) when|	| goes to infinity?
(iii) Does the limit densityρ∞ have the same periodicity as the assumed periodicity

of the nuclei?
We shall not deal here with the physical background of this theoretical problem, and we
refer the reader to the textbooks [4,51] and articles [26,30]. We prefer to concentrate
ourselves on the mathematical works that are devoted to this difficult question.

The models we shall consider are models arising in Quantum Chemistry, and therefore
models that are only valid at zero temperature. From the mathematical viewpoint, the
thermodynamic limit problem has been extensively studied, in the zero temperature case
as well as in the case of strictly positive temperatures.

A brief historical survey should go as follows. The story has really begun with Fischer
and Ruelle, who have proved the existence of the thermodynamic limit for the (classical
or quantum) microcanonical, canonical, and grand canonical ensembles for a system of
particles inRd (see [44], and references therein). It is worth noticing that their proof
did not cover the case of a long range interaction like the Coulomb interaction. It is
only in the late sixties that Lieb and Lebowitz, using a result by Dyson and Lenard,
proved the existence of the thermodynamic limit for real matter, i.e. with Coulomb forces
(see [25–27,24]). This undoubtedly constitutes the first milestone of the mathematical
understanding of these problems of Statistical Mechanics. The proof has next been
extended by Lieb and Narnhofer [31] in 1974 to deal with the case of Jellium, that is
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to say to deal with a model where the electrons are immersed in a uniformly positively
charged background.

In 1985, Fefferman laid the second milestone by proving in [17] the existence of the
thermodynamic limit for a crystal, in the statistical setting. For the first time, a statistical
model of a non spherically symmetric matter was treated in this respect. With slight
modifications, Fefferman’s proof has been extended by Gregg in 1989 ([18]) to treat
Coulomb-like interactions. Let us emphasize that the two main difficulties that we have
just identified, namely the long range nature of the Coulomb potential and the (obvious)
lack of spherical symmetry of the periodic lattices, will be of course also present in our
work.

In this very brief survey, we have on purpose omitted to mention the ground-breaking
work [32] by Lieb and Simon on the thermodynamic limit in the framework of the
Thomas–Fermi theory (TF Theory for short). Indeed, this work is at the origin of our
own study [11] on the Thomas–Fermi–von Weizsäcker model (TFW model for short),
and has therefore a far larger impact on our work than the, however fundamental, works
that we have quoted above.

At this stage of our short presentation of the state of the art of the mathematical
knowledge on thermodynamic limit problems, we find it useful to briefly recall now
the results that we have obtained in [11] on the Thomas–Fermi–von Weizsäcker model.
Indeed, many of the concepts and techniques that we have used in [11] (some of them
being inherited from Lieb and Simon, some others being especially introduced by us in
order to treat the TFW case) will be useful here. Moreover, recalling the complete results
we have obtained in the TFW case will help the reader to place the results we shall
obtain here on the Hartree model in this context. It is also to be remarked that our results
on the TFW model include Lieb and Simon results on the TF model (suppress simply
the gradient term in the energy functional and make the quite obvious corresponding
modifications in the sequel).

The Thomas–Fermi–von Weizsäcker model for the neutral molecular system de-
scribed above is an improved form of the standard Thomas–Fermi model, and reads
as follows

ITFW
	 = inf

{
ETFW
	 (ρ)+ 1

2

∑
y �=z∈	

1

|y − z| ;ρ � 0,
√
ρ ∈H 1(R3),∫

R3

ρ = |	|
}
, (1)

ETFW
	 (ρ)=

∫
R3

∣∣∇√
ρ
∣∣2 +

∫
R3

ρ5/3 −
∫
R3

( ∑
k∈	

1

|x − k|
)
ρ(x)dx

+ 1

2

∫ ∫
R3×R3

ρ(x)ρ(y)

|x − y| dx dy. (2)

The TFW (and as well as the TF) model belongs to a large class of models that is
today identified as the models arising in Density Functional Theory: we refer the reader
to [14,41] for an introduction to the general features and the physical foundations of such
models. Mathematically, it is a well-known fact that the problem (1)–(2) has a unique
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minimizing density, denoted byρ	 (see Lieb [29], Benguria et al. [5], or Lions [35]),
and that, denotingu	 = √

ρ
	

, u	 is a solution to

−�u	 +
[

5

3
ρ

2/3
	 −�	

]
u	 = −θ	u	, (3)

where we denote by

�	 = ∑
k∈	

1

|x − k| − ρ	 � 1

|x| ,

the effective potential the electrons experience, and whereθ	 > 0 is the Lagrange
multiplier associated to the constraint in (1).

In our previous work [11], we have proved that the three questions (i)–(ii)–(iii) of the
thermodynamic limit problem that we have asked above can be answered positively in
the setting of the TFW theory. More precisely, let us first of all introduce the periodic
potentialG uniquely defined by

−�G= 4π
(

−1+ ∑
y∈Z3

δ(· − y)
)
, (4)

and ∫
Q

G= 0, (5)

and then define the following periodic minimization problem set on the unit cellQ of
the lattice

ITFW
per = inf

{
ETFW

per (ρ); ρ � 0,
√
ρ ∈H 1

per(Q),

∫
Q

ρ = 1
}
, (6)

ETFW
per (ρ)=

∫
Q

∣∣∇√
ρ
∣∣2 +

∫
Q

ρ5/3 −
∫
Q

ρ(x)G(x)dx

+ 1

2

∫ ∫
Q×Q

ρ(x)ρ(y)G(x − y)dx dy, (7)

where

H 1
per(Q)=

{
u ∈H 1

loc

(
R3), u periodic inxi, i = 1,2,3, of period 1

}
.

The main results we obtain in [11] may be stated as follows (we need technical
assumptions that are irrelevant in this introduction and that we therefore do not make
precise here): up to an additive constantM/2 that only depends onG through

M = lim
x→0

G(x)− 1

|x| , (8)
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and which is just a matter of normalization, we have convergence of the TFW energy per
unit volume to the infimumITFW

per ; moreover the densityρ	 minimizing ITFW
	 converges

(uniformly locally, at least) to the unique periodic densityρper minimizing ITFW
per .

In view of these results, the reader may understand the main two motivations of
our whole work. Our purpose is twofold: first, we want to check that the molecular
model under consideration does have the good behaviour in the limit of large volumes;
second, we wish to set a limit problem that is well-posed mathematically and that can be
justified in the most possible rigorous way (in particular with a view to give a sound
ground to the numerical simulations of the condensed phase). As far as this second
aim is concerned, it is clear (at least we hope it is) from the above formulae that one
keypoint for the definition of the periodic problem is the definition of laws of interaction
between particles, i.e. of the interaction potential(s). In the TFW setting, the second aim
was less prominent since the potentialG is the same as the one appearing in the TF
setting and the periodic minimization problem is rather easy to guess in view of the one
arising for the TF theory. Likewise, it is easy to check that this periodic minimization
problem is mathematically well-posed. In other words, taking benefit from the work by
Lieb and Simon who had already defined the TF periodic problem, the idea to introduce
the periodic problem (6)–(7) was straightforward. In [11], our “only” contribution was
therefore to prove that the TFW model does converge in the thermodynamic limit to (6)–
(7). The purpose of the present work is the study of the thermodynamic limit problem
in the Hartree setting. We shall see below that the guess on the periodic problem is not
so obvious in the Hartree model. Consequently, the mere definition of the limit problem
turns out to be a substantial piece of the work (writing a periodic problem that has some
rigorous mathematical sense is not straightforward). This paper is aimed at describing it.
It will certainly be rather clear to the reader that the questions we tackle here in trying to
define as rigorously as possible periodic problems in the Hartree framework are indeed
close to questions of interest in Solid State Physics, both for theoretical and numerical
purposes. For the sake of brevity, we shall not detail here the relationship between our
work and Solid State Physics. We only mention some references here, namely [23,40],
and also [2,4,9,39,42,47,48,53], and refer the reader to some future work of our own.
Because of the complexity of the Hartree setting, we shall not be able to do in this setting
everything we did in the TFW setting, namely proving the convergence of the energy
per unit volume in the thermodynamic limit. We shall indeed prove the convergence of
the energy per unit volume in the thermodynamic limit for a simplified Hartree model
(namely the restricted Hartree model, treated in Section 3). Furthermore, we shall prove
the convergence of the energy per unit volume for one very peculiar form of the true
Hartree model (see Section 4), but our efforts to prove it for the generic form of the
Hartree model have failed so far. From the single example we have in hand, and from
more general considerations, we shall however deduce a general form for a periodic
Hartree problem that is likely to be the thermodynamic limit of the Hartree model. We
shall prove, still in Section 4, that this periodic model defines a mathematically well-
posed minimization problem.

Let us finally mention that the Hartree–Fock setting is discussed by the authors in [13].
But before all, let us devote Section 2 to the definition of the general setting we shall

work in, and to the detailed presentation of the results we shall establish.
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2. General setting of the models and main results

Let us begin this section by defining the molecular models we shall deal with in this
article. There are two of them, namely on the one hand the Hartree model and, on the
other hand, its simplified form, the restricted Hartree model. For the sake of brevity, we
shall often abbreviate these models in the H and the RH models, respectively.

We recall from the introduction that, for each	, finite subset ofZ3 ⊂ R3, we consider
the molecular system consisting of the|	| nuclei located at the points of	, and |	|
electrons. We shall henceforth denote by

V	(x)=
∑
k∈	

1

|x − k| , (9)

the attraction potential created by the nuclei on the electrons, and by

1

2
U	 = 1

2

∑
m,n∈	,m�=n

1

|m− n| (10)

the self-repulsion of the nuclei.
As in [11], we shall also consider the case when the nuclei are not point nuclei but are

smeared nuclei. In that case, each Dirac mass located at a pointk of 	 is replaced by a
compactly supported smooth non-negative function of total mass one, typically denoted
bym(· − k), and “centered” at that point of	. The regularity of the functionm does not
play a great role in the sequel, and therefore we shall assume without loss of generality
thatm isC∞. The potential (9) and the repulsion (10) are then respectively replaced by

V m	 (x)=
∑
k∈	
m �

1

|x − k| , (11)

1

2
Um	 = 1

2
D

(∑
k∈	
m(· + k),∑

k∈	
m(· + k)

)
− 1

2
|	|D(m,m). (12)

In the above equation, we have as usual denoted byD(·, ·) the double integral defined as
follows

D(f,f )=
∫
R3

∫
R3

f (x)f (y)

|x − y| dx dy. (13)

It will be convenient to introduce in this setting the function

m	 = ∑
k∈	
m(· − k). (14)

In this setting of smeared nuclei, we shall also make use of the effective potential�	
defined for each electronic densityρ	 as follows

�	 = (m	 − ρ	) � 1

|x| . (15)
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It is now time to recall the properties of the sequence of sets	 that we shall consider.
For the sake of completeness, we recall here the following definition taken from [11].

DEFINITION 1. – We shall say that a sequence(	i)i�1 of finite subsets ofZ3 goes to
infinity if the following two conditions hold:

(a)For any finite subsetA⊂ Z3, there existsi ∈ N such that

∀j � i, A⊂	j.
(b) If 	h is the set of points inR3 whose distance to∂
(	) is less than h, then

lim
i→∞

|	hi |
|	i | = 0, ∀h > 0.

Condition(b) will be hereafter referred to as the Van Hove condition.

Briefly speaking, a sequence satisfying the Van Hove condition is a sequence for
which the ‘boundary’ is negligible in front of the ‘interior’. A sequence of large cubes
typically satisfies the conditions of Definition 1. We shall only consider henceforth Van
Hove sequences going to infinity in the sense of the above definition. Following the
notation of [32,11], we shall write henceforth lim	→∞ f (	) instead of limi→∞ f (	i).

We now need to define the following useful functional transformation, that we have
already used in [11], and which will be again very efficient in the present work.

DEFINITION 2. – For a given sequence	 and a sequenceρ	 of densities, we call
the∼transform ofρ	 and denote bỹρ	 the following sequence of functions

ρ̃	 = 1

|	|
∑
k∈	
ρ	(· + k).

We finally introduce

f (x)= 1

|x| −
∫
Q

dy

|x − y| ,

next

f	(x)=
∑
k∈	

(
1

|x − k| −
∫
Q

dy

|x − k− y|
)
. (16)

It is convenient to rewritef	 as

f	 = V	 − χ
(	) � 1

|x| , (17)

where, more generally, we shall denote byχ* the characteristic function of the domain
*. Besides, it is proved in [32], and recalled in [11], that, whenQ is a cube,

|f (x)| � C

|x|4 (18)
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almost everywhere onR3, for some positive constantC, and thatf	 converges
to the periodic potentialG + d, for some real constantd independent of	, uni-
formly on compact subsets ofR3 \ Z3. Moreover, for any compact subsetK of R3,
f	 − ∑

k∈	∩K
1

|x−k| converges uniformly onK toG+ d − ∑
k∈Z3∩K

1
|x−k| (see [32]).

We shall make use in the sequel of the following notation. IfH is a functional space,
we denote byHunif(R3) the space

Hunif
(
R3) = {

ψ ∈D′(R3)/ψ ∈H(x +Q) ∀x ∈ R3, sup
x∈R3

‖ψ‖H(x+Q) <∞}
.

In addition, we shall also simply writef �Q g instead off � (χQ g).
We are now in position to introduce the molecular models we shall deal with. The

Hartree model is defined as follows.

IH	 = inf
{
EH	 (ϕ1; . . . ;ϕ|	|)+ 1

2
U	;ϕi ∈H 1(R3), ∫

R3

ϕ2
i = 1, 1 � i � |	|

}
, (19)

EH	 (ϕ1; . . . ;ϕ|	|)=
|	|∑
i=1

(∫
R3

|∇ϕi|2− 1

2
D

(|ϕi |2, |ϕi |2)
)

−
∫
R3

V	ρ+ 1

2
D(ρ,ρ), (20)

with

ρ =
|	|∑
i=1

|ϕi |2. (21)

The Hartree model was historically introduced by Hartree in [19]. It is a well-known fact
that, for any subset	 of R3, this minimization problem is attained by at least one vector
(ϕ1; . . . ;ϕ|	|), with ϕi > 0 for every 1� i � |	| (see the works by Lieb and Simon
in [33] and by Lions in [35]).

In the smeared nuclei case, the energy functional of the Hartree model reads as follows

E
m,H
	 (ϕ1; . . . ;ϕ|	|)=

|	|∑
i=1

(∫
R3

|∇ϕi|2 − 1

2
D

(|ϕi |2, |ϕi |2)
)

−
∫
R3

V m	 ρ+ 1

2
D(ρ,ρ), (22)

and the minimization problem can therefore be written in the following more concise
form

I
m,H
	 = inf

{ |	|∑
i=1

(∫
R3

|∇ϕi |2 − 1

2
D

(|ϕi|2, |ϕi|2)
)

+ 1

2
D(ρ −m	,ρ −m	)

− 1

2
|	|D(m,m);ϕi ∈H 1(R3), ∫

R3

ϕ2
i = 1, 1 � i � |	|

}
, (23)

where we recall thatm	 is given by (14).
As announced above, we also define the restricted Hartree model, obtained from the

standard Hartree model by introducing the self-interaction between electroni and itself
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in the energy functional. In the point nuclei case, this model reads

IRH
	 = inf

{
ERH
	 (ϕ1; . . . ;ϕ|	|)+ 1

2
U	;ϕi ∈H 1(R3), ∫

R3

ϕ2
i = 1, 1 � i � |	|

}
, (24)

ERH
	 (ϕ1; . . . ;ϕ|	|)=

∫
R3

|	|∑
i=1

|∇ϕi |2 −
∫
R3

V	ρ + 1

2
D(ρ,ρ), (25)

with ρ being defined as in (21). It is obvious that, for all	,

ERH
	 �EH	 , (26)

and thus

IRH
	 � IH	 . (27)

In the smeared nuclei case, the energy functional of the restricted Hartree model reads
as follows

E
m,RH
	 (ϕ1; . . . ;ϕ|	|)=

|	|∑
i=1

∫
R3

|∇ϕi|2 −
∫
R3

V m	 ρ + 1

2
D(ρ,ρ), (28)

and the minimization problem can therefore be written in the following more concise
form

I
m,RH
	 = inf

{ |	|∑
i=1

∫
R3

|∇ϕi|2 + 1

2
D(ρ −m	,ρ −m	)− 1

2
|	|D(m,m);

ϕi ∈H 1(R3), ∫
R3

ϕ2
i = 1, 1� i � |	|

}
. (29)

In view of the periodic problem that we have obtained in [11] for the TFW model, it is
rather natural to introduce the following minimization problem, that we intend to relate
with the Hartree model with	 fixed:

IHper = inf
{
EHper(ϕ);ϕ ∈H 1(R3), ∫

R3

|ϕ|2 = 1
}
, (30)

where the periodic energyEH is defined as follows

EHper(ϕ)=
∫
R3

|∇ϕ|2 − 1

2
D

(|ϕ|2, |ϕ|2) −
∫
Q

Gρ + 1

2
DG(ρ,ρ), (31)

with

ρ(x)= ∑
k∈Z3

|ϕ|2(x + k), (32)
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and the following notation that we shall adopt henceforth (in the spirit of the
notation (13))

DG(f,f )=
∫
Q

∫
Q

f (x)G(x − y)f (y)dx dy. (33)

We recall thatQ denotes here and henceforth the unit cube]−1
2,+1

2]3. On the
other hand, for the restricted Hartree problem, we introduce the following minimization
problem

IRH
per = inf

{
ERH

per(ρ); ρ � 0,
√
ρ ∈H 1

per(Q),

∫
Q

ρ = 1
}
, (34)

where we denote byH 1
per(Q) the set of allQ-periodic functions inH 1

loc(R
3) and where

the periodic energy functionalERH is given by

ERH
per(ρ)=

∫
Q

∣∣∇√
ρ
∣∣2 −

∫
Q

Gρ + 1

2
DG(ρ,ρ). (35)

It is easy to show that the minimization problem (34)–(35) admits a unique minimum
(the same property will hold true in the smeared nuclei setting below). We now define
the periodic H and RH problems in the smeared nuclei case.

Im,Hper = inf
{
Em,Hper (ϕ); ϕ ∈H 1(R3), ∫

R3

|ϕ|2 = 1
}
, (36)

where the periodic energyEm,Hper is defined as follows

Em,Hper (ϕ)=
∫
R3

|∇ϕ|2 − 1

2
D

(|ϕ|2, |ϕ|2) + 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m), (37)

with the periodic densityρ being related toϕ through (32).
On the other hand, for the restricted Hartree problem, we introduce the following

minimization problem

Im,RH
per = inf

{
Em,RH

per (ρ); ρ � 0,
√
ρ ∈H 1

per(Q),

∫
Q

ρ = 1
}
, (38)

Em,RH
per (ρ)=

∫
Q

∣∣∇√
ρ
∣∣2 + 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m). (39)

The main purpose of Section 3 will be to prove the following result on the
thermodynamic limit of the RH problem.
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THEOREM 2.1 (Thermodynamic limit for the RH energy). –In the point nuclei case,
we have

lim
	→∞

IRH
	

|	| = IRH
per + M

2
,

where the constantM is defined by(8). Likewise, in the smeared nuclei case, we have

lim
	→∞

I
m,RH
	

|	| = Im,RH
per + M

2
,

whereM is this time defined by

M =
∫ ∫
Q×Q

m(x)m(y)
[
G(x − y)− 1/|x − y|] dx dy. (40)

We shall also make there some comments on this result.
As far as the Hartree model is concerned, we shall extensively present our point of

view in Section 4, but let us already emphasize here that our main result will be the
following one, which states that the minimization problem we have defined above is
mathematically well-posed.

THEOREM 2.2 (Well-posedness of the H periodic problem). –The minimization
problem defined by(30)–(31) (respectively by(36)–(37))admits a minimum. In addition,
any minimizing sequence of(30)–(31) (respectively(36)–(37)) is relatively compact in
H 1(R3), up to a translation.

Is is to be mentioned here that in the proof of the above theorem, we shall make use
of the concentration-compactness method [34].

As announced in the introduction, we shall also see in Section 4 that, for a very
particular choice of smeared nuclei, we are able to prove the convergence of the Hartree
energy per unit volume to the periodic energy (30). We refer the reader to Proposition 4.1
below. We also prove in Section 4.4 the following.

PROPOSITION 2.1. – We assume that the Van Hove sequence	 satisfies

lim
	→∞

|	h|
|	| Log|	h| = 0, ∀h > 0, (41)

where	h is defined in Definition1. We assume here that the unit cellQ is a cube and
that there exists a minimizerϕper ∈ H 1(R3) of IHper which shares the symmetries of the
unit cube. Then,

lim sup
	→∞

IH	

|	| � IHper +
M

2
,

whereIHper is defined by(30)–(31).

As announced in the introduction, the sequel of this paper is devoted to the proofs of
the above results. We shall also give some complements.
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3. The restricted Hartree model

We devote this section to the thermodynamic limit problem of the so-called restricted
Hartree model (RH model for short). We shall see that we shall be allowed to extend
to this setting most of the methods introduced in [11] in order to prove that the TFW
energy has a thermodynamic limit. Of course this study can be seen as a step towards the
study of the complete Hartree model (H for short) that will be addressed in the following
section. We shall see however that despite their relative formal resemblance, the RH
model, on the one hand, and the Hartree model, on the other hand, do behave in a very
different fashion, as far as the thermodynamic limit problem is concerned. For the time
being, let us concentrate on the RH model.

Let us now recall the definition we have given in Section 2 above of the restricted
Hartree model. For the sake of brevity, we shall only consider in this section the case of
point nuclei. Actually, the case of smeared nuclei is easier to treat, and we leave it to the
reader.

For every finite subset	 of Z3, the RH model is defined as follows:

IRH
	 = inf

{
ERH
	 (ϕ1; . . . ;ϕ|	|)+ 1

2
U	;

∀1� i � |	|, ϕi ∈H 1(R3), ∫
R3

ϕ2
i = 1

}
, (42)

with

ERH
	 (ϕ1; . . . ;ϕ|	|)=

∫
R3

|	|∑
i=1

|∇ϕi|2 −
∫
R3

V	ρ + 1

2

∫ ∫
R3×R3

ρ(x)ρ(y)

|x − y| dx dy, (43)

ρ = ∑|	|
i=1 |ϕi|2, and where we recall thatV	(x) = ∑

y∈	
1

|x−y| . If we compare with
the complete Hartree model given in (19)–(20), we may note that only the interaction
between the electrons has been modified and has been replaced by a mean-field potential
which is the same for each of the|	| electrons. In other words, the self-interaction of
each electron has been reincorporated into the energy functional.

We show now that, due to this modification, this infimum is the same as

inf
{
ERH
	 (ρ)+

1

2
U	; ρ � 0,

√
ρ ∈H 1(R3), ∫

R3

ρ = |	|
}
, (44)

with

ERH
	 (ρ)=

∫
R3

∣∣∇√
ρ
∣∣2 −

∫
R3

V	 ρ + 1

2

∫ ∫
R3×R3

ρ(x)ρ(y)

|x − y| dx dy. (45)

Indeed, we first recall from [35] that, on the one hand, the infimum defined by (44)–
(45) is achieved by a unique positive functionρRH (the uniqueness coming from the
strict convexity of the functionalρ �→ ERH

	 (ρ) defined by (45)). On the other hand, the
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infimum in (42) is attained by|	| positive functionsϕi , for 1� i � |	|. In addition, for
every 1� i � |	|, ϕi satisfies

−�ϕi − V	 ϕi +
(
ρ �

1

|x|
)
ϕi + θiϕi = 0 onR3, (46)

for someθi > 0. This latter claim comes from the fact that, since
∫
ρ = |	|, the positive

part of the spherical average of the potential−V	 + (ρ � 1
|x|), which is identically 0,

lies in L3/2(R3). Then, we may apply a result of Lieb and Simon in [32]. Therefore,
sinceϕi > 0 and since−V	 + (ρ � 1

|x|) also belongs toLpunif(R
3), for somep > 3

2,
ϕi is the (unique) positive normalized eigenfunction associated to the first eigenvalue
of the operator−� − V	 + (ρ � 1

|x|) on R3, and the corresponding eigenspace is
of dimension 1 (see, for example, [46]). We thus conclude thatθ1 = · · · = θ|	| and
ϕ1 = · · · = ϕ|	|(= 1√|	|

√
ρ). Then, returning to (46), we deduce thatϕ = √

ρ is a critical

point forERH
	 . Since the functionalρ �→ ERH

	 (ρ) is strictly convex and sinceρ satisfies
the right charge constraint, we conclude thatρ is the unique minimizer ofERH

	 , that is
ρRH. Our claim follows.

From now on, with a view to proving the existence of the thermodynamic limit for the
energy per unit volume for theRH model, we shall essentially use the expression (45)
for the energy and identifyIRH

	 with (44). It is therefore to be emphasized that we deal
with a sequence of minimization problems which are of density functional type: only the
electronic densityρ appears in the minimization and not the electronic wavefunctions
initially involved in (43). Consequently, we shall be able to use most of the machinery
developed in [11] to treat the TFW model. As far as the thermodynamic limit for the
energy per unit volume is concerned, this machinery (in particular the trick that consists
of approximating the Coulomb problem by a problem where the interaction is of Yukawa
type) will be effective and really allows us to determine the behaviour ofERH

	 /|	|
(see Theorem 3.1 below). Unfortunately, we have not been able to use it in order to
determine the behaviour of the densityρ	, apart from some very basic results that will
be mentioned below.

We shall relate the thermodynamic limit of the restricted Hartree model with the
periodic minimization problem defined by

IRH
per = inf

{
ERH

per(ρ);ρ � 0,
√
ρ ∈H 1

per(Q),

∫
Q

ρ = 1
}
, (47)

where

ERH
per(ρ)=

∫
Q

∣∣∇√
ρ
∣∣2 −

∫
Q

Gρ + 1

2

∫ ∫
Q×Q

ρ(x)ρ(y)G(x − y)dx dy. (48)

Before turning to the thermodynamic limit problemper se, let us first give some results
on the existence and the uniqueness of the minimizer ofIRH

per .

LEMMA 3.1 (Properties ofIRH
per ). – Let IRH

per be defined by(47) and (48). Then,IRH
per

is achieved by a unique positive functionρper, uper = √
ρper ∈H 1

per(Q) ∩ L∞(R3), and
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satisfies

−�uper −Guper +
(∫
Q

G(x − y)ρper(y)dy
)
uper + θperuper = 0, on R3, (49)

for some real numberθper.

Proof of Lemma 3.1. – The existence and the uniqueness of a minimizer ofIRH
per follows

from the following observations. SinceG is periodic and since the functionG− 1
|x| is

continuous and bounded onQ, it is easy to check thatIRH
per is finite. Indeed, on the

one hand, it is easily seen , by using for example the Fourier series expansion of the
periodic potentialG (see [32]), that the quadratic formf �→DG(f,f ) is non-negative.
On the other hand, sinceG is in L3/2

unif(R
3), for everyε > 0, there is a positive constant

k(ε) such that we may decomposeG into G = G1 + G2 with ‖G1‖L∞(Q) � k(ε) and
‖G2‖L3/2(Q) � ε. Now let ρ � 0 be such thatu ≡ √

ρ ∈ H 1
per(Q). We first notice that

0<
∫
Q u � 1 because

∫
Q u

2 = 1, and from Schwarz’s inequality. Therefore, we have,
using first Hölder’s, and then Sobolev–Poincaré’s inequalities,

EHper(ρ)�
∫
Q

|∇u|2 −
∫
Q

G(x)u2(x)dx

�
∫
Q

|∇u|2 − k(ε)
∫
Q

u2 − ε‖u‖2
L6(Q)

� (1− 2ε)
∫
Q

|∇u|2 − k(ε)−Cε,

for some positive constantC, that is independent ofε andu. We conclude by choosingε
small enough.

By the way, the same argument shows that every minimizing sequenceρn of IHper is
such thatun = √

ρn is bounded inH 1
per(Q). Then, extracting a subsequence if necessary,

we may assume thatun converges weakly inH 1
per(Q), strongly inLpunif(R

3) for all
1 � p < 6 (from Rellich’s Theorem) and almost everywhere onR3. The limit is then
a minimizer ofIHper. The uniqueness of the minimizer follows from the strict convexity
of the functional.

In addition, sinceG is in Lqunif(R
3) for all 1 � q < 3, it is clear from (49) that

−�uper is in Lpunif for every 1� p < 2. Thus,u ∈W 2,p
unif . In particular, from Sobolev’s

embeddings,u ∈ L∞(R3). In fact, by a standard bootstrap argument,u is inW 2,p
unif ∩C0, α,

for every 1� p < 3 and 0< α < 1. ✷
Let us turn now to the thermodynamic limit problem we are interested in and prove

first the following:

LEMMA 3.2. – For every Van Hove sequence(	), we have

lim sup
	→∞

IRH
	

|	| � IRH
per + M

2
. (50)
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Proof of Lemma 3.2. – The proof is immediate once we have noticed that, for allε > 0,

IRH
	 � ITFW

	,ε , (51)

where the notationITFW
	,ε stands for the usual TFW problem we have studied in [11],

with ε as a coefficient in front of the Thomas–Fermi term
∫

R3 ρ
5/3 in the definition of the

TFW functional; namely

ETFW
	,ε (ρ)=

∫
R3

∣∣∇√
ρ
∣∣2 + ε

∫
R3

ρ5/3 −
∫
R3

( ∑
k∈	

1

|x − k|
)
ρ(x)dx

+ 1

2

∫ ∫
R3×R3

ρ(x)ρ(y)

|x − y| dx dy, (52)

ITFW
	,ε = inf

{
ETFW
	,ε (ρ)+

1

2

∑
y �=z∈	

1

|y − z| ;ρ � 0,
√
ρ ∈H 1(R3),∫

R3

ρ = |	|
}
. (53)

Next, in view of the results of [11], we obtain from (51), and for everyε > 0,

lim sup
	→∞

IH	

|	| � lim
	→∞

ITFW
	,ε

|	| = ITFW
per,ε + M

2
, (54)

where, obviously,ITFW
per,ε is the periodic TFW model with a multiplicative parameterε in

front of the term
∫
Q ρ

5/3 in the definition of the TFW periodic functional; namely

ITFW
per,ε = inf

{
ETFW
per,ε(ρ); ρ � 0,

√
ρ ∈H 1

per(Q),

∫
Q

ρ = 1
}
, (55)

ETFW
per,ε(ρ)=

∫
Q

∣∣∇√
ρ
∣∣2 + ε

∫
Q

ρ5/3 −
∫
Q

ρ(x)G(x)dx

+ 1

2

∫ ∫
Q×Q

ρ(x)ρ(y)G(x − y)dx dy. (56)

Assertion (50) follows now by lettingε go to 0 in (54), and by comparing with the
definition (47) ofIRH

per . ✷
We next prove the existence of a bound from below for the energy per unit volume in

the RH case.

LEMMA 3.3. – For every Van Hove sequence(	), we have

lim inf
	→∞

IRH
	

|	| � IRH
per + M

2
. (57)
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Proof of Lemma 3.3. – Our strategy of proof will consist of comparing from below
IRH
	 with the corresponding minimization problem where the Coulomb potential has

been replaced by a Yukawa potentialexp(−a|x|)
|x| , a > 0, and then lettinga go to 0. Let

us recall that the same strategy has already been used in [11] in the TFW setting. We
shall therefore only sketch the main lines of the proof and refer the reader to [11] for the
details.

We thus define, for everya > 0,

I a	 = inf
{
Ea	(ρ)+

1

2
Ua	; ρ � 0,

√
ρ ∈H 1(R3), ∫

R3

ρ = |	|
}
, (58)

with

Ea	(ρ)=
∫
R3

∣∣∇√
ρ
∣∣2 −

∫
R3

V a	 ρ + 1

2

∫ ∫
R3×R3

ρ(x)ρ(y)V a(x − y)dx dy, (59)

V a(x)= exp(−a|x|)
|x| , V a	(x)=

∑
y∈	
V a(x − y), and Ua	 = ∑

y,z∈	
y �=z

V a(y − z).

It is clear that we may choosea small enough such thatI a	 is achieved for all finite
subset	 of Z3. In addition, by using the methods of Chapter 2 of [11] for the upper limit
and the ones of Chapter 3 of [11] for the lower limit, it is easy to check that

lim
	→∞

I a	

|	| = I aper(µa), (60)

for any Van Hove sequence(	), whereµa andI aper(µa) are defined just below. We set

I aper(µa)= inf
{
Eaper(ρ)+

1

2
Ua∞;ρ � 0,

√
ρ ∈H 1

per(Q),

∫
Q

ρ = µa
}
,

with

Eaper(ρ)=
∫
Q

∣∣∇√
ρ
∣∣2 −

∫
Q

V a∞(x)ρ(x)dx + 1

2

∫ ∫
Q×Q

ρ(x)ρ(y)V a∞(x − y)dx dy,

V a∞(x)=
∑
y∈Z3

V a(x − y), and Ua∞ = ∑
y,z∈Z3

y �=z

V a(y − z).

Finally the massµa is defined as follows. We denote byρaper the unique minimizer of
Eaper on the set{ρ � 0,

√
ρ ∈H 1

per(Q)}. Then, we defineµa = min(1,
∫
Q ρ

a
per). (All these

definitions are justified in [11].) Arguing as in Chapter 2 of [11], we may prove that

lim
a→0+µa = 1,



I. CATTO ET AL. / Ann. I. H. Poincaré – AN 19 (2002) 143–190 159

and that

lim
a→0+ I

a
per(µa)= IRH

per + M

2
. (61)

To conclude, we argue now as in Chapter 3 of [11], to check that

IRH
	

|	| � I a	

|	| −C a,

for some positive constantC that is independent of	. Next, we let	 go to infinity in
the above inequality and use (60) to obtain

lim inf
	→∞

IRH
	

|	| � I aper(µa)−Ca.

(57) then follows by lettinga go to 0 and by using (61).✷
Remark3.1. – In the case when the unit cell is a cube, it is possible to prove the

above lemma by a different argument which does not use the comparison with a Yukawa
potential. Indeed, as in [11], we may use the∼-transform trick and prove directly the
lower bound. Of course, this argument relies upon the convexity of the RH functional
with respect to the electronic density.

As a consequence of (50), we may prove that

COROLLARY 3.1 (Compactness). –Letρ	 be the minimizer ofIRH
	 , then

1

|	|
∫


(	)c

ρ	 → 0, as	→ ∞.

The analogous result holds true in the Hartree setting, and a proof is sketched in this
setting (see the proof of Lemma 4.3 below).

Remark3.2. – This property means that, asymptotically, the|	| electrons remain
in 
(	); that is, in a box of volume|	|. In other words, we could also say that no
electrons have escaped to “infinity”; this is the reason why this property is referred to as
“compactness” in [11].

Finally, collecting Lemma 3.2 and Lemma 3.3, we have proved the following

THEOREM 3.1 (Thermodynamic limit for the energy in the RH model). –For every
Van Hove sequence(	),

lim
	→∞

IRH
	

|	| = IRH
per + M

2
. (62)

Let us make some comments. Having proved the existence of the thermodynamic limit
for the energy per unit volume for the RH model, we may prove as in Chapter 5 of [11],
some preliminary convergence results concerning the convergence of the densities. In
particular, we may show that the∼-transform ofρ	, ρ̃	, converges to the minimizerρper
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of IHper, or, even, thatρ	(· + y	) converges toρper in H 1(Q) for somey	 ∈	. However,
we do not know how to improve these (weak) notions of convergence of the densities.
Indeed, in the framework of the RH model, we are not able to establish uniformL∞
bounds (for example) for the densities as in the TFW case, since the bounds obtained in
that setting are based upon the specific nature of the power nonlinearity which arises in
the Euler–Lagrange equations (see [11] for the details). Another point which is related
to the previous one is that we do not know whether there exists a unique solution(u,�)

to the system 


−�u−�u= 0 onR3,

u� 0, u �≡ 0,

−��= 4π
[ ∑
k∈Z3

δk − u2
]
,

without prescribing boundary conditions onu or � (like periodicity or conditions at
infinity, for example). On the contrary, we have proved in [11] that the analogue of the
above system in the TFW setting, which can be written as




−�u+ u7/3 −�u= 0,
u� 0, u �≡ 0,

−��= 4π
[ ∑
k∈Z3

δk − u2
]
,

admits a unique (thus periodic) solution.

4. The Hartree model

Let us first of all recall the Hartree model which will be the subject of this section:

IH	 = inf
{
EH	 (ϕ1; . . . ;ϕ|	|)+ 1

2
U	;ϕi ∈H 1(R3), ∫

R3

ϕ2
i = 1, 1 � i � |	|

}
, (63)

EH	 (ϕ1; . . . ;ϕ|	|)=
|	|∑
i=1

(∫
R3

|∇ϕi|2 − 1

2
D

(|ϕi|2, |ϕi|2)
)

−
∫
R3

V	ρ + 1

2
D(ρ,ρ), (64)

where as usual we denoteρ = ∑|	|
i=1 |ϕi |2.

In view of the energy functional (63) which clearly is a sum of a functional involving
theϕi ’s explicitly and a functional depending only on the densityρ and not on theϕi ’s
themselves, it is rather natural to isolate the part depending explicitly on theϕi ’s, and
therefore to introduce the following auxiliary minimization problem

IC = inf
{
EC(ϕ);ϕ ∈H 1(R3), ∫

R3

|ϕ|2 = 1
}
, (65)
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with

EC(ϕ)=
∫
R3

|∇ϕ|2 − 1

2
D

(|ϕ|2, |ϕ|2), (66)

which is nothing else but the well-known Choquard problem. For the convenience of the
reader, we mention here that the fact thatIC >−∞ is a straightforward consequence of
the following string of inequalities

D
(
ϕ2, ϕ2) �C

∥∥ϕ2∥∥2
L6/5(R3)

= C‖ϕ‖4
L12/5(R3)

�C‖ϕ‖3
L2(R3)

‖ϕ‖L6(R3) � C‖∇ϕ‖L2(R3), (67)

whereC denotes various positive constants that are independent ofϕ, the last inequality
being true since

∫
R3 ϕ

2 = 1. The existence and the uniqueness of the minimizer of (65)
are subtler facts proven in Lieb [28].

As a matter of fact, the Choquard problem will play a central role in our analysis of
the thermodynamic limit for the Hartree energy. We shall see that below, but let us for
the moment concentrate ourselves on thea priori estimates that we may show on the
Hartree energy per unit volume.

4.1. A priori estimates and consequences

The first estimate is rather straightforward, since it is a simple consequence of Lemma
3.2 and of the fact that the Hartree energy functional is clearly bounded from above by
the restricted Hartree energy functional:

LEMMA 4.1. – There exists a constantC such that, for any Van Hove sequence(	),

IH	

|	| � C. (68)

Let us now turn to the existence of lower bound for the energy per unit volume. Of
course, we cannot use any more the analogous results for the restricted Hartree model.
Nevertheless, we have:

LEMMA 4.2. – There exists a constantC such that, for any Van Hove sequence(	),

IH	

|	| � C. (69)

Proof of Lemma 4.2. – Let us first prove this claim in the case of smeared nuclei, and
we shall next explain how we proceed with minor modifications in the case of point
nuclei.

We recall the expression (22)–(23) for the energy in the case of smeared nuclei

E
m,H
	 (ϕ1; . . . ;ϕ|	|)=

|	|∑
i=1

[∫
R3

|∇ϕi |2 − 1

2
D

(
ϕ2
i , ϕ

2
i

)]

+ 1

2
D(m	 − ρ	,m	 − ρ	)− 1

2
|	|D(m,m). (70)
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Since the termD(m	 − ρ	,m	 − ρ	) is non-negative, it follows that

1

|	|E
m,H
	 (ϕ1; . . . ;ϕ|	|)�

1

|	|
|	|∑
i=1

[∫
R3

|∇ϕi|2 − 1

2
D

(
ϕ2
i , ϕ

2
i

)] − 1

2
D(m,m)

� IC − 1

2
D(m,m), (71)

using the definition that we have recalled above of the Choquard problem.
In the case of point nuclei, arguing as in Chapter 3 of [11], we rewrite the expression

for IH	 =EH	 (ϕH1 ; . . . ;ϕH|	|)+ U	
2 as

IH	 =
|	|∑
i=1

[∫
R3

|∇ϕi |2 − 1

2
D

(
ϕ2
i , ϕ

2
i

)] −
∫
R3

f	 ρ	

+ 1

2
D(χ
(	) − ρ	, χ
(	) − ρ	)+ 1

2
U	 − 1

2
D(χ
(	), χ
(	)), (72)

wheref	 is defined through (16). As before, we begin with noticing that the first sum is
bounded from below as follows

|	|∑
i=1

[∫
R3

|∇ϕi|2 − 1

2
D

(
ϕ2
i , ϕ

2
i

)]
� |	|IC, (73)

and that the term1
2D(χ
(	) − ρ	, χ
(	) − ρ	) is non-negative. Therefore proving the

bound from below amounts to proving that

−
∫
R3

f	 ρ	 + 1

2
U	 − 1

2
D(χ
(	), χ
(	))� −C|	|,

where, here and below,C denotes a positive constant that is independent of	. On the
one hand, we have already proved in [11] that

∣∣U	 −D(χ
(	), χ
(	))
∣∣ � C|	|.

On the other hand, in view of the upper bound (68) onIH	 , it is straightforward to see
that

|	|∑
i=1

[∫
R3

|∇ϕi |2 − 1

2
D

(
ϕ2
i , ϕ

2
i

)] −
∫
R3

f	 ρ	 � C |	|, (74)

We next show, without difficulty, that for allε > 0, there exists a positive constantk(ε)
independent of	 such thatf	 = f (1)	 + f (2)	 with ‖f (1)	 ‖L∞ � k(ε) and‖f (2)	 ‖

L
3/2
unif

� ε.
Then, using Hölder’s and Sobolev’s inequality, we check that

∣∣∣∣
∫
R3

f	 ρ	

∣∣∣∣ � k(ε) |	| + ε
|	|∑
i=1

∫
R3

|∇ϕi|2. (75)
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At this stage, we insert, for everyε > 0, the bound (75) into (74). It follows that

1

|	|
|	|∑
i=1

∫
R3

|∇ϕi|2 � C, (76)

by the same argument as the one used to establish (67), and that

1

|	|
|	|∑
i=1

D
(
ϕ2
i , ϕ

2
i

)
�C.

Therefore, we have ∣∣∣∣
∫
R3

f	 ρ	

∣∣∣∣ �C|	|,

and consequently, returning to (72), the desired bound from below follows.✷
Thanks to the bounds we have obtained in the course of the proof of the above lemma,

we state (and prove) in the following two lemmas, first a “compactness” result which
is similar to the one we have obtained in the RH setting (in particular, the comments in
Remark 3.2 also apply here), and, next, a further bound on the electronic density.

LEMMA 4.3. – Let ρ	 be the electronic density corresponding to a minimizer
(ϕH1,	; . . . ;ϕH|	|,	) of IH	 . We have

lim
	→∞

1

|	|
∫


(	)c

ρ	 = 0. (77)

With the help of the bounds (80) and (76), we may establish the

LEMMA 4.4. – Let ρ	 be the electronic density corresponding to a minimizer
(ϕH1,	; . . . ;ϕH|	|,	) of IH	 . We have

1

|	|
∫
R3

ρ
3/2
	 �C, (78)

for some constantC that is independent of	.

Proof of Lemmas 4.3 and 4.4. – Let us argue first in the smeared nuclei case. We recall
from [49] and [11] that, for any functionh	 in H 1(R3),

∣∣∣∣
∫
R3

(m	 − ρ	)h	
∣∣∣∣ � CD(m	 − ρ	,m	 − ρ	)1/2‖∇h	‖L2(R3), (79)

(this is easy to check using Fourier transforms), where here and belowC denotes a
positive constant that is independent of	.
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Let us begin with the proof of Lemma 4.3. In view of the expression (70) along with
the bound from below (73) and the bound from above for the energy (68), we deduce
that the density of a minimizer satisfies

1

|	|D(m	 − ρ	,m	 − ρ	)� C. (80)

Next, it only remains to apply (79) with a special choice forh	; namely,h	 is such
that 0� h	 � 1, h	 ≡ 1 on 
(	), h	 = 0 on {x ∈ 
(	)c; d(x; ∂
(	)) � 1}, and∫

R3 |∇h	|2 = o(|	|) (see the details in Chapter 3 of [11]).
In order to prove Lemma 4.4, we remark that (76) implies in particular

∫
R3

∣∣∇√
ρ	

∣∣2 � C|	|. (81)

Then, we may apply the inequality (79) withh	 = √
ρ	, and we deduce from (80)

and (81) that ∣∣∣∣
∫
R3

(m	 − ρ	)√ρ	
∣∣∣∣ � C|	|.

The Cauchy–Schwarz inequality now gives

∣∣∣∣
∫
R3

m	
√
ρ	

∣∣∣∣ � ‖m	‖L2(R3)

∥∥√
ρ	

∥∥
L2(R3)

�C|	|.

The same argument carries through to the case of point nuclei, replacingm	 by χ
(	)
everywhere above, since the various bounds obtained in the course of the proof of
Lemma 4.2 yield in particularD(χ
(	) − ρ	,χ
(	) − ρ	)� C|	|. ✷
4.2. A striking example

In view of the estimates of the previous section, it seems reasonable to believe that the
Hartree energy per unit volume admits a thermodynamic limit (though it is not explicitly
proven). The natural question is then to determine even formally such a limit. We go
back to the expression for the Hartree energy given in (64), that is

EH	 (ϕ1; . . . ;ϕ|	|)=
|	|∑
i=1

(∫
R3

|∇ϕi|2 − 1

2
D

(|ϕi |2, |ϕi|2)
)

−
∫
R3

V	ρ + 1

2
D(ρ,ρ),

that can be rewritten in the usual way

EH	 (ϕ1; . . . ;ϕ|	|)=
|	|∑
i=1

∫
R3

|∇ϕi |2 −
∫
R3

V	ρ + 1

2

∑
1�i �=j�|	|

D
(|ϕi|2, |ϕj |2).
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It is then tempting to argue as follows: in view of the large number|	| of functions
asymptotically involved, there should not be a large difference between the above energy
and the restricted Hartree energy given in (45). In other words, since the number of
“diagonal” terms[i = j ], namely|	|, is small compared to the numbers (|	|2 − |	|) of
the “off-diagonal” terms[i �= j ], one could be tempted to replace the sum

∑
1�i �=j�|	|

by the sum
∑

1�i,j�|	|, and obtain the same problem in the thermodynamic limit,
both for the Hartree and the restricted Hartree problem. As a consequence, the Hartree
model should degenerate in the thermodynamic limit, to a periodic problem of density
functional type. As we shall see, this guess is wrong. We shall provide two arguments in
the favor of this claim. We shall first prove, for a very special case detailed just below,
that the thermodynamic limit of the energy per unit volume converges to the periodic
Hartree model we have set before. Secondly, we prove in Section 4.4 below that the
upper limit of the energy per unit volume in the general Hartree setting may be bounded
from above by the periodic Hartree model, provided the unit cell of the crystal is a cube,
and provided there exists a minimizer of the Hartree periodic model which shares the
symmetries of the unit cube. In both cases, the limit of the energy per unit volume is
clearly strictly smaller than the corresponding periodic energy in the restricted Hartree
setting, as shown in Section 4.4 below.

To convince the reader that the diagonal terms do play a role even in the limit, we
consider the Hartree model for smeared out nuclei, and we moreover choose a very
particular form of nuclei. Let us denote byϕC a positive minimizer of the Choquard
problem introduced in (65) (there are many minimizers, all equal from one another up to
a translation, we just pick out one of them). We chooseϕ2

C as a shape of the nuclei. For
each finite set	, the measurem	 defining the density of nuclei is therefore

m	 = ∑
k∈	
ϕ2
C(· − k). (82)

The Hartree energy (70) then reads

E
m,H
	 (ϕ1; . . . ;ϕ|	|)=

|	|∑
i=1

[∫
R3

|∇ϕi|2 − 1

2
D

(
ϕ2
i , ϕ

2
i

)]

+ 1

2
D(m	 − ρ	,m	 − ρ	)− 1

2
|	|D(

ϕ2
C,ϕ

2
C

)
.

It is straightforward to see on the above expression that any(ϕ1; . . . ;ϕ|	|) such that
{ϕi;1 � i � |	|} = {ϕC(· − k);k ∈ 	} defines a minimizer of this Hartree problem.
Indeed, by definition of the Choquard minimumϕC we have, for all arbitrary functionϕ

∫
R3

|∇ϕ|2 − 1

2
D

(
ϕ2, ϕ2) �

∫
R3

|∇ϕC |2 − 1

2
D

(
ϕ2
C,ϕ

2
C

)

with equality if and only ifϕ = ϕC(· + y), for somey in R3, and on the other hand

1

2
D(m	 − ρ	,m	 − ρ	)� 0,
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with equality whenm	 = ρ	 = ∑
k∈	 ϕ2

k , which happens precisely when{ϕk;1 � k �
|	|} = {ϕC(· − k);k ∈	}.

As a consequence, we have in this setting

1

|	|I
m,H
	 = IC − 1

2
D

(
ϕ2
C,ϕ

2
C

)
,

and, also,

lim
	→∞

I
m,H
	

|	| = inf
{∫

R3

|∇ϕ|2 − 1

2
D

(
ϕ2, ϕ2) + 1

2
DG(m− ρ,m− ρ)− 1

2
D(m,m);

ϕ ∈H 1(R3),∫
R3

ϕ2 = 1, ρ = ∑
k∈Z3

|ϕ|2(· + k)
}
.

We have therefore proven

PROPOSITION 4.1. – In the special case when the shape of the nuclei is given by the
Choquard minimizerϕC through(82), the energy per unit volume for the Hartree model
converges in the thermodynamic limit to the infimum of the associated periodic problem
(36)–(37)–(32), up to the usual additive constantM/2.

In addition, the Hartree minimizer, which in this special case is(ϕC(· − k))k∈	
converges to(ϕC(· − k))k∈Z3, whereϕC minimizes(36)–(37)–(32).

The above setting has therefore allowed us to figure one possible thermodynamic limit
for the generic Hartree model. We are now going to study this periodic problem.

4.3. Well-posedness of the Hartree periodic problem

In view of the above example, we believe that we are founded to consider the periodic
Hartree problem introduced in (30)–(31) and that we recall here for convenience

IHper = inf
{
EHper(ϕ);ϕ ∈H 1(R3), ∫

R3

|ϕ|2 = 1
}
,

EHper(ϕ)=
∫
R3

|∇ϕ|2 − 1

2
D

(|ϕ|2, |ϕ|2) −
∫
Q

Gρ + 1

2
DG(ρ,ρ), (83)

with

ρ(x)= ∑
k∈Z3

|ϕ|2(x + k). (84)

Note that (83) may equivalently be written as

EHper(ϕ)=
∫
R3

|∇ϕ|2 − 1

2
D

(|ϕ|2, |ϕ|2) −
∫
R3

Gϕ2 + 1

2

∫ ∫
R3×R3

ϕ2(x)G(x − y)ϕ2(y)dx dy.
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The analogous problem for smeared nuclei is given by

Im,Hper = inf
{
Em,Hper (ϕ);ϕ ∈H 1(R3), ∫

R3

|ϕ|2 = 1
}
, (85)

where the periodic energyEm,Hper is defined as follows

Em,Hper (ϕ)=
∫
R3

|∇ϕ|2 − 1

2
D

(|ϕ|2, |ϕ|2)

+ 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m). (86)

We have the following result announced in Section 2

THEOREM 2.2 (Well-posedness of the H periodic problem). –The minimization
problem defined by(30)–(31) (respectively by(36)–(37))admits a minimum. In addition,
any minimizing sequence of(30)–(31) (respectively(36)–(37)) is relatively compact in
H 1(R3), up to a translation.

The rest of this paragraph is devoted to the proof of this theorem. For the sake of
clarity, we only do the proof in the smeared nuclei case. A straightforward adaptation of
the following arguments allows one to conclude in the case of point nuclei.

Proof of Theorem 2.2. – Let us first make the following observation. Since the
quadratic formf �→DG(f,f ) is non-negative, we may use, once more the comparison
from below by the Choquard energy, and we obtain without difficulty thatIm,Hper >−∞.

Step 1: Compactness of the periodic density.
Let ϕn be a minimizing sequence of (85)–(86). It is clear that the Choquard energy

∫
R3

|∇ϕn|2 − 1

2
D

(|ϕn|2, |ϕn|2) (87)

of ϕn is bounded, and therefore, by using (67), thatϕn is bounded inH 1(R3).
Consequently,ρn = ∑

k∈Z3 ϕ 2
n (· − k) satisfies

√
ρ
n

is bounded inH 1
per(Q), (88)

for ∫
Q

ρn =
∫
R3

ϕ2
n = 1, (89)

and by convexity ∫
Q

∣∣∇√
ρn

∣∣2 �
∫
R3

|∇ϕn|2. (90)

It follows that (extracting a subsequence if necessary)
√
ρ
n

converges weakly in
H 1

per(Q), strongly inLp(Q), 2� p < 6 (by the Rellich–Kondrakov theorem), and thus
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almost everywhere onR3, to some
√
ρ satisfying

∫
Q

ρ = 1, (91)

and

lim
n→+∞DG(ρn −m,ρn −m)=DG(ρ −m,ρ −m). (92)

The “only” question that remains to settle is the behaviour ofϕn itself in order to pass
to the (lower) limit in the Choquard energy (87). (Note that the weak convergence of
ϕn in H 1(R3) is not sufficient to conclude.) Another point is worth to be noticed at this
stage. Sincem andG are periodic, we obviously check that, for anyk in Z3 andϕ in
H 1(R3), Em,Hper (ϕ(· + k)) = Em,Hper (ϕ), and thatϕ(· + k) andϕ yield the same density
ρ through (84). Therefore, the minimization problem under consideration has some
translation invariance, and the meaningful notion of convergence for the minimizing
sequences is the convergence up to some translation. For these reasons, we shall adopt in
the following the concentration-compactness approach (and its terminology), for which
we refer the reader to [34] and the Appendix of [35].

Step 2: Vanishing does not occur.
We argue by contradiction, and begin by assuming that the sequenceϕn vanishes, that

is to say, for allR > 0,

lim
n→+∞ sup

x∈R3

∫
x+BR

ϕ2
n = 0. (93)

A standard consequence of (93) (see [34]) is thatϕn converges to 0 inLp(R3) for all
2< p < 6. Hence,

lim
n→+∞D

(
ϕ2
n, ϕ

2
n

) = 0. (94)

On the other hand, by the convexity argument used in (90), we have

lim inf
n→+∞

∫
R3

|∇ϕn|2 � lim inf
n→+∞

∫
Q

∣∣∇√
ρn

∣∣2 �
∫
Q

∣∣∇√
ρ
∣∣2, (95)

where we recall thatρ is the limit ofρn. It follows from (94) and (95) that

Im,Hper + 1

2
DG(m,m)= lim inf

n→+∞

[∫
R3

|∇ϕn|2 − 1

2
D

(
ϕ2
n, ϕ

2
n

) + 1

2
DG(ρn −m,ρn −m)

]

�
∫
Q

∣∣∇√
ρ
∣∣2 + 1

2
DG(ρ −m,ρ −m). (96)

Therefore, contradicting the vanishing assumption amounts to exhibiting someϕ ∈
H 1(R3) such that the following two properties are satisfied

∑
k∈Z3

ϕ2(· − k)= ρ (97)
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and ∫
R3

|∇ϕ|2 − 1

2
D

(
ϕ2, ϕ2)< ∫

Q

∣∣∇√
ρ
∣∣2. (98)

Indeed, assume for a moment that we have at our disposal someϕ satisfying (97)–(98).
We then have

Im,Hper + 1

2
DG(m,m)

� inf
{∫

R3

|∇ψ |2 − 1

2
D

(
ψ2,ψ2); ψ ∈H 1(R3), ∑

k∈Z3

ψ2(· − k)= ρ
}

+ 1

2
DG(ρ −m,ρ −m)

�
∫
R3

|∇ϕ|2 − 1

2
D

(
ϕ2, ϕ2) + 1

2
DG(ρ −m,ρ −m)

<

∫
Q

∣∣∇√
ρ
∣∣2 + 1

2
DG(ρ −m,ρ −m).

This contradicts (96).
In order to construct a convenientϕ, let us first of all consider a partition of unity. We

fix someω1 ∈D(R3), ω1 � 0,
√
ω1 ∈W 1,∞(R3), and

∑
k∈Z3

ω1(· − k)= 1.

(Such a function exists; indeed, for anyϕ ∈ D(R3), with ϕ � 0 and
∫
ϕ = 1, ϕ � χQ

provides an example.) We next scale this functionω1 by defining, for alln ∈ N,

ωn = 1

n3
ω1

( ·
n

)
.

The functionωn yields again a partition of unity

∑
k∈Z3

ωn(· − k)= 1. (99)

Indeed, it suffices to remark that the function in the left-hand side of (99) is periodic and
to show by a simple calculation, that we leave to the reader, that its Fourier transform at
the points ofZ3 is everywhere zero except at 0 where its takes the value one.

Next, we consider the sequence of functionsψn = √
ρ
√
ωn. It is easily checked that

ψn ∈H 1(R3) when
√
ρ ∈H 1

per(Q). By construction,

∑
k∈Z3

ψ2
n(· − k)= ρ(·)

∑
k∈Z3

ωn(· − k)= ρ(·),
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and we shall prove that, forn large enough,

∫
R3

|∇ψn|2 − 1

2
D

(
ψ2
n,ψ

2
n

)
<

∫
Q

∣∣∇√
ρ
∣∣2.

We claim that

D
(
ψ2
n,ψ

2
n

) = 1

n

∫ ∫
R3×R3

ρ(nx)ρ(ny)ω1(x)ω1(y)

|x − y| dx dy

= 1

n
D(ω1,ω1)+ o

(
1

n

)
. (100)

In order to prove this claim, let us remark first that, by the Riemann-Lebesgue theorem,
the sequence of functionsρ(n ·) converges weakly inLploc, for every 1� p � 3, to the
constant function of value

∫
Q ρ = 1 asn goes to infinity.

Denoting for a whileρn(x)= ρ(nx), we remark next that

∫ ∫
R3×R3

ρ(nx)ρ(ny)ω1(x)ω1(y)

|x − y| dx dy =
∫
R3

(
ρnω1 �

1

|x|
)
ρnω1.

It is easy to see that(ρnω1) �
1
|x| is bounded inH 2

loc(R
3) sinceρnω1 is bounded in

L2(R3). Therefore it strongly converges inL2
loc(R

3), toω1�
1
|x| , and thus((ρnω1)�

1
|x|)ω1

converges inL2(R3) to (ω1 �
1
|x|)ω1. As ρn converges weakly locally inL2 to 1, we

obtain (100).
We now estimate∫

R3

|∇ψn|2 =
∫
R3

∣∣∇√
ρ
∣∣2ωn + 2

∫
R3

√
ρ
√
ωn∇√

ρ · ∇√
ωn +

∫
R3

∣∣∇√
ωn

∣∣2ρ
=

∫
Q

∣∣∇√
ρ
∣∣2 + 1

2n

∫
R3

∇ρ(nx) · ∇ω1(x)dx + 1

n2

∫
R3

∣∣∇√
ω1(x)

∣∣2
ρ(nx)dx.

To treat the last term, we remark that

1

n2

∫
R3

∣∣∇√
ω1(x)

∣∣2ρ(nx)dx � 1

n2

∫
Supp(ω1)

∣∣∇√
ω1(x)

∣∣2ρ(nx)dx

� 1

n2

∥∥∇√
ω1

∥∥2
L∞

∫
Supp(ω1)

ρ(nx)dx

� 1

n2
C te

∥∥∇√
ω1

∥∥2
L∞

∫
Q

ρ = O
(

1

n2

)
.

For the second term, we compute by Green’s formula∫
R3

∇ρ(nx) · ∇ω1(x)dx = −
∫
R3

ρ(nx)�ω1(x)dx



I. CATTO ET AL. / Ann. I. H. Poincaré – AN 19 (2002) 143–190 171

and the right-hand side goes to 0 asn goes to infinity, forρ(nx) converges to 1 inD′(R3),
and

∫
R3�ω1 = 0. Therefore, we have

1

2n

∫
R3

∇ρ(nx) · ∇ω1(x)dx = o
(

1

n

)
.

Collecting these informations, we deduce

∫
R3

|∇ψn|2 =
∫
Q

∣∣∇√
ρ
∣∣2 + o

(
1

n

)
. (101)

From (101) together with (100), we obtain

∫
R3

|∇ψn|2 − 1

2
D

(
ψ2
n,ψ

2
n

) =
∫
Q

∣∣∇√
ρ
∣∣2 − 1

2n
D(ω1,ω1)+ o

(
1

n

)
.

Therefore, forn large enough, we obtain a convenient functionϕ in (97)–(98) by setting
ϕ = ψn. We have thus reached a contradiction, and it follows that vanishing does not
occur. The next step consists of ruling out dichotomy. As we shall see, this is somewhat
more intricate than ruling out vanishing.

Step 3: Dichotomy does not occur.
Let us come back to the minimizing sequenceϕn of our problem. Since (93) does

not occur, there exist a subsequence ofϕn (still denoted byϕn), R0 > 0, ε0 > 0, and a
sequence of pointsyn in R3, such that

∫
BR0

ϕ2
n(· + yn)� ε0. (102)

By setting yn = [yn] + kn, with [yn] in Q and kn in Z3, and ϕ̃n = ϕn(· + kn), we
obtain another minimizing sequenceϕ̃n of Im,Hper , which yields the same limit densityρ.
Moreover, since[yn] is bounded, we infer from (102) that the weak limit ofϕ̃n in L2(R3)

is not identically zero. In all that follows, we shall work with the new sequenceϕ̃n (still
denoted byϕn for simplicity). Without loss of generality, we may assume thatϕn � 0.
Moreover, with the help of Ekeland’s principle [16], given a minimizing sequenceϕ̂n,
we may construct a new minimizing sequenceϕn, such that

Im,Hper �Em,Hper (ϕn)�Em,Hper (ϕ̂n), (103)

and that

‖ϕ̂n − ϕn‖L2(R3) → 0, asn→ ∞. (104)

In particular, it is easily seen that the densities corresponding toϕn and ϕ̂n, namely
ρn = ∑

k∈Z3 ϕ 2
n (·−k) andρ̂n = ∑

k∈Z3 ϕ̂ 2
n (·−k), converge to the same limitρ. Moreover,

ϕn satisfies
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−�ϕn −
(
ϕ2
n �

1

|x|
)
ϕn + (

G �Q (ρn −m))ϕn + εnϕn → 0, (105)

in L2(R3) (at least), asn goes to infinity, for some real numberεn. We recall that,
in (105),m denotes the measure defining the smeared nucleus in the unit cellQ, and
we have denoted

G �Q (ρn −m)=
∫
Q

G(x − y)(ρn(y)−m(y)) dy.

In addition, εn is a sequence of “almost” Lagrange multipliers. Using the facts that
all minimizing sequences ofIm,Hper are bounded inH 1(R3), we then easily deduce,
from (104) and Sobolev and Hölder’s inequalities, that

‖ϕ̂n − ϕn‖Lp(R3) → 0, asn→ ∞, (106)

for every 2� p < 6, and we also check from (105) thatεn is bounded. Moreover, we may
assume thatϕn converges toϕ1 � 0, weakly inH 1(R3), strongly inLploc(R

3), for every
1 � p < 6, and almost everywhere onR3. Moreover, because of (102),

∫
R3 ϕ

2
1 > 0. Of

course, if
∫

R3 ϕ
2
1 = 1, the proof is over. Indeed, (106) then yields the strong convergence

of ϕn andϕ̂n to ϕ1 in Lp(R3), for every 2� p < 6. In particular,ρ = ∑
k∈Z3 ϕ2

1(· − k),
and ϕ2

n �
1
|x| converges toϕ2

1 �
1
|x| for the strong convergence inLq(R3), for every

3< q <+∞. Hence,

lim
n→+∞D

(
ϕ2
n, ϕ

2
n

) =D(
ϕ2

1, ϕ
2
1

)
. (107)

Using (92), we thus prove without difficulty that

Im,Hper = lim sup
n→+∞

Em,Hper (ϕ̂n)

� lim inf
n→+∞ E

m,H
per (ϕ̂n)

� lim inf
n→+∞ E

m,H
per (ϕn)

�Em,Hper (ϕ1)

� Im,Hper .

Therefore, all above inequalities are equalities. In particular,ϕ1 is a minimizer ofIm,Hper .
Moreover, we deduce from (107) and (92) that

lim
n→+∞

∫
R3

|∇ϕ̂n|2 = lim
n→+∞

∫
R3

|∇ϕn|2 =
∫
R3

|∇ϕ1|2,

and, thus,̂ϕn andϕn both converge toϕ1 for the strong convergence inH 1(R3) (at least).
We now assume by contradiction that

∫
R3 ϕ

2
1 < 1, and setϕ2,n = ϕn − ϕ1. We shall

analyze the behaviour of the sequenceϕ2,n, following the scheme of proof which is given
in the Appendix of Lions [35]. Sinceϕ2,n is bounded inH 1(R3), we may reproduce
with ϕ2,n the same argument as the one we just made onϕn. We leave apart for the
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moment the case whenϕ2,n vanishes in the sense of Step 2 (this case will be ruled
out in Step 4 below), and concentrate first on the most difficult case when a ‘standard’
dichotomy arises. That is to say, we assume that there exists a sequence of pointsyn
in R3, with |yn| → +∞, such thatϕ2,n(· + yn) converges toϕ2 � 0, ϕ2 �≡ 0, weakly
in H 1(R3), strongly inLploc(R

3), for every 1� p < 6, and almost everywhere onR3.
When dichotomy occurs, we see, by reproducing several times the above argument, that
the sequenceϕn splits into many pieces, each piece going far away from all the others.
Assuming that, at each step, the case of vanishing is left apart for a while, we infer the
existence of functionsϕk ∈H 1(R3), ϕk � 0, such that

ϕn −
K∑
k=1

ϕk
(· + y(n)k ) → 0, (108)

strongly inL2(R3), asn goes to infinity, and for some sequences of pointsy
(n)
k ∈ R3

such that|y(n)k −y(n)l | → +∞, if k �= l. Let us observe that in (108) above, 2�K � +∞
(whenK = 1, ϕn is compact up to a translation). Our first step will consist in showing
thatK is finite; that is to say, dichotomy may involve only finitely many pieces going
far away from each over. Indeed, otherwise, by settingαk = ∫

ϕ2
k > 0, we must haveαk

going to 0, ask goes to infinity, since
∑
k�1αk = 1, due to (108). Therefore, passing to

the limit in (105) asn goes to infinity, it is not difficult to check that theϕk ’s are infinitely
many (non-negative) solutions, in the sense of distributions at least, to

−�ϕk −
(
ϕ2
k �

1

|x|
)
ϕk +Wϕk + εϕk = 0, (109)

such thatϕk goes to 0 inL2(R3), ask goes to infinity, where we have denoted

W =G �Q (ρ −m), (110)

and whereε is the limit of the “almost Lagrange multipliers”εn appearing in (105).
The two main points in (109) are that (a) the Lagrange multiplierε is the same in
all the equations, which is a standard fact in the concentration-compactness approach,
(b) the periodic potentialW is also the same, which is a consequence of the fact that the
sequence of densitiesρn is known to be compact from Step 1. It is to be noticed that the
argument which is used in the Appendix of [35] to prove thatK is finite, within some
specific examples, is not valid in our case, forW is periodic (in particular, it does not
decay to 0 at infinity). Nevertheless, we may argue in the following way. Using (67) and
the fact thatW is in L3/2

unif(R
3), it is a standard exercise to deduce from (109) (that we

apply toϕk , and then integrate overR3), thatϕk is bounded inH 1(R3). Therefore,ϕk
converges to 0 strongly inLp(R3), for every 2� p < 6, almost everywhere onR3, and
weakly inH 1(R3). In fact, going back to (109), we even deduce the strong convergence
of ϕk to 0 inH 1(R3). We now claim that the sequencevk in H 1(R3), which is defined
by vk = ϕk/‖ϕk‖L2(R3), satisfies‖vk‖L2(R3) = 1, together with

−�vk +W vk + εvk → 0, in L2(R3).
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This is simply a consequence of the convergence ofϕk to 0, and of the well-known bound

∥∥∥∥ϕ2
k �

1

|x|
∥∥∥∥
L∞(R3)

� 2‖ϕk‖L2(R3)‖∇ϕk‖L2(R3)

(which is, for example, deduced from Cauchy–Schwarz and Hardy’s inequalities). These
properties ofvk imply that−ε is in the spectrum of−�+W (see, for example, [43]). We
then reach a contradiction, since we shall prove later that−ε is actually strictly below
the infimum of the spectrum of−�+W (see the comment following (126) below).

Having proved that dichotomy yields a finite number of “pieces”, we may argue now,
without loss of generality, as if there were onlytwopieces,ϕ1, andϕ2,n, which is compact
up to the translation along the vectorsyn. In other words, we have

ϕn − ϕ1 − ϕ2(· − yn)→ 0, (111)

strongly inLp(R3), for every 2� p < 6, and weakly inH 1(R3).
For reasons which will become clear in a moment, we define now the following family

of minimization problems, indexed by a densityρ̃ � 0, such that
√
ρ̃ ∈H 1

per(Q)

Iρ̃ = inf
{∫

R3

|∇ϕ|2 − 1

2
D

(
ϕ2, ϕ2);ϕ ∈H 1(R3), ∑

k∈Z3

ϕ2(x + k)= ρ̃(x)
}
. (112)

The fact that the minimizing sequenceϕn of the periodic Hartree problem (36) we
consider has split into two piecesϕ1 andϕ2,n (with the convergence (111)) while the
densityρn = ∑

k∈Z3 ϕ2
n(· + k) converges to the periodic densityρ of unit mass clearly

implies that {
Iρ � Iρ1 + Iρ2,

ρ = ρ1 + ρ2,
(113)

where we have denoted

ρi =
∑
k∈Z3

ϕ2
i (· + k), i = 1,2. (114)

In addition, we necessarily have

Iρi =
∫
R3

|∇ϕi|2 − 1

2
D

(
ϕ2
i , ϕ

2
i

)
, i = 1,2, (115)

for we always have

Iρ � Iρ1 + Iρ2. (116)

Indeed, letε > 0 be fixed, then there exist some functionsψi , i = 1,2, in D(R3), such
that

∑
k∈Z3ψ2

i (· + k)= ρi , and

∫
R3

|∇ψi|2 − 1

2
D

(
ψ2
i ,ψ

2
i

)
� Iρi + ε. (117)
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Then, choosingn in Z3, such thatψ1 andψ2(· + n) have disjoint supports, and defining
ψn =ψ1 +ψ2(· + n), it is easily seen that

∑
k∈Z3ψ2

n(· + k)= ρ1 + ρ2 = ρ, and that

Iρ �
∫
R3

|∇ψn|2 − 1

2
D

(
ψ2
n,ψ

2
n

)

�
∑
i=1,2

[∫
R3

|∇ψi|2 − 1

2
D

(
ψ2
i ,ψ

2
i

)] + o(1)

� Iρ1 + Iρ2 + 2ε+ o(1),

where o(1) goes to 0 whenn goes to infinity. Therefore, the inequality in (113) turns to
be an inequality, which gives (115). We deduce (116), by lettingn go to infinity, and then
ε go to 0 in the above string of inequalities. In order to reach a contradiction with (113)
(and therefore conclude that dichotomy does not occur), we shall now prove the converse
inequality, namely

Iρ < Iρ1 + Iρ2. (118)

Note that these strict inequalities (118) involve variational problems with pointwise
constraints, which is non-standard in the concentration-compactness method.

To proceed further, we need to obtain more information on the functionsϕ1 andϕ2.
In particular, we prove now that these functions have an exponential decay at infinity.
Passing to the limit locally in (105), we thus obtain the system of equations

{−�ϕ1 − (ϕ2
1 �

1
|x|)ϕ1 +Wϕ1 + εϕ1 = 0,

−�ϕ2 − (ϕ2
2 �

1
|x|)ϕ2 +Wϕ2 + εϕ2 = 0,

(119)

with the periodic potentialW being defined by (110).
First of all, asϕi � 0 and ϕi �≡ 0, it follows from (119) and from the Harnack

inequality thatϕi > 0. Next, we claim that

ε > 0. (120)

For this purpose, we remark that
∫
Q ρ = 1, and therefore that

∫
Q

W = 0.

A straightforward consequence of this observation is that the first eigenvalue of the
operator−� +W on the unit cellQ, with periodic boundary conditions, denoted by
λ1(−�+W,per), is necessarily negative

λ1(−�+W,per) < 0. (121)

Indeed, it suffices to test the hamiltonian−�+W on the constant function1
|Q| , which

yields λ1(−� +W,per) � 0, and to remark that this constant function cannot be the
first eigenfunction of−�+W unlessW ≡ 0. This latter case may happen, but it is even
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simpler to conclude thatε > 0 then. Indeed,W ≡ 0 meansρ = m. The functionϕ1 is
then a positive solution to

−�ϕ1 −
(
ϕ2

1 �
1

|x|
)
ϕ1 + εϕ1 = 0.

If ε � 0, we then obtainλ1(−�− ϕ2
1 �

1
|x| ,*) > 0 on all bounded domain*, and this

cannot be true (use a rescaled functionuσ (x) = σ 3/2u(σx) with σ small enough). We
shall therefore assume thatW �≡ 0 in the sequel, which implies (121).

We shall denote henceforth byϕper the first periodic eigenfunction of−�+W onQ.
From (121), we deduce that for any cubeKR = [0,R]3 with R large enough, the

first eigenvalue of the operator−�+W onKR with homogeneous Dirichlet boundary
conditions, denoted byλ1(−�+W,KR), is negative. Indeed, it suffices to take as a test
functionψ/‖ψ‖L2 whereψ is built as follows:ψ is equal toϕper on [1,R − 1]3, and
we glue to it a smooth function in order to satisfy the homogeneous Dirichlet boundary
conditions on∂KR . Obviously,

∫
KR

|∇ψ |2 +Wψ2 = (R− 2)3λ1(−�+W,per)+ O
(
R2),

from where we deduce, forR large enough,

λ1(−�+W,KR) < 0,

and, thereforea fortiori,

λ1

(
−�−

(
ϕ2

1 �
1

|x|
)

+W,KR
)
< 0. (122)

Let us now contradict (120) and assume thatε � 0. We then have

{−�ϕ1 − (
ϕ2

1 �
1
|x|

)
ϕ1 +Wϕ1 = −εϕ � 0,

ϕ1> 0.

A standard argument, recalled in [11], shows that this implies that for all bounded
domain*, the first eigenvalue of the operator appearing in the left-hand side with
homogeneous Dirichlet boundary conditions is non-negative:

λ1

(
−�−

(
ϕ2

1 �
1

|x|
)

+W,*
)

� 0. (123)

Of course, we reach a contradiction with (122), and therefore we have proven our
claim (120).
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Let us now see what this latter information implies on the behaviour at infinity ofϕ1

(the same holding true of course forϕ2 respectively). We are in the following situation:




−�ϕ1 − (
ϕ2

1 �
1
|x|

)
ϕ1 +Wϕ1 + εϕ1 = 0,

ϕ1> 0,
W isQ-periodic,

∫
QW = 0, ε > 0.

(124)

We claim that (124) implies that

ϕ1 (respectivelyϕ2) has an exponential decay at infinity. (125)

This is probably a well-known fact. For the sake of consistency, we provide now one
possible proof of this claim.

We begin with proving that (124) implies

λ1(−�+W + ε,per) > 0. (126)

Let us make some comment on this inequality. (126) implies that−ε is strictly below the
essential spectrum of the linearized operator−�+W , since, as we are going to check,
λ1(−�+W,per) is precisely the bottom of the essential spectrum of−�+W . Indeed,
on the one hand,−� +W being a self-adjoint Schrödinger operators with a periodic
potential, its spectrum consists only of essential spectrum andλ1(−�+W,per) belongs
to the spectrum (see [43,15,52]). On the other hand, sinceW is in Lpunif(R

3), for some
p > 3/2, it follows, from the Rayleigh–Ritz principle and Harnack’s inequality, that
the first eigenfunction of−�+W with periodic boundary conditions onQ is positive.
Therefore,λ1(−�+W,per) is below the bottom of the spectrum of−�+W on R3

(see [46]). Let us turn now to the proof of (126).
It is easy to prove thatλ1(−�+W+ε,per) cannot be strictly negative. Indeed, should

it be the case, we would just argue as we did before, building with the first eigenfunction
of −�+W + ε (which is of course the functionϕper introduced above) a convenient test
function in order to prove that we then have necessarilyλ1(−�+W + ε,KR) < 0 for
some large enough cubeKR . Now, because of (124), we must have in particular (arguing
as we did to prove (123)),

λ1(−�+W + ε,*) > 0

for any bounded domain*, and we therefore reach a contradiction.
In order to prove (126), it still remains to show thatλ1(−�+W + ε,per) cannot be 0

either. For this purpose, we have to be a little more careful. Ifλ1(−�+W + ε,per)= 0,
we have

(−�+W + ε)ϕper = 0.

We consider the functionχRϕper, whereχR is a cut-off function built as follows

χR(x)= 1

R3/2
χ1

(
x

R

)
,
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with χ1 a given smooth cut-off function, spherically symmetric, that vanishes outside the
unit ball, and that is normalized by

∫
χ2

1 = 1. A simple computation shows that∫ ∣∣∇(χRϕper)
∣∣2 =

∫
ϕ2

per|∇χR|2 −
∫
χ2
R�ϕperϕper.

It follows that∫ ∣∣∇(χRϕper)
∣∣2 −

(
ϕ2

1 �
1

|x|
)
(χRϕper)

2 + (W + ε)(χRϕper)
2

=
∫
χ2
R

(−�ϕper + (W + ε)ϕper
)
ϕper −D(

ϕ2
1, χ

2
Rϕ

2
per

) +
∫
ϕ2

per|∇χR|2

= −D(
ϕ2

1, χ
2
Rϕ

2
per

) +
∫
ϕ2

per|∇χR|2. (127)

We remark that ∫
ϕ2

per|∇χR|2 � ‖ϕper‖2
L∞

∫
|∇χR|2 = O

(
1

R2

)
,

and that

D
(
ϕ2

1, χ
2
Rϕ

2
per

)
� (inf ϕper)

2D
(
ϕ2

1, χ
2
R

)
� (inf ϕper)

2 1

R

∫
BR

ϕ2
1

(the last inequality being true because of Newton’s theorem). Inserting both informations
into (127), we obtain that forR large enough, the left-hand side of (127) is negative, and
therefore

λ1

(
−�− ϕ2

1 �
1

|x| +W + ε,BR
)
< 0

which contradicts the fact thatλ1(−� − ϕ2
1 �

1
|x| + W + ε,*) � 0, for any bounded

domain*. Hence, (126) is proven.
As (126) holds, we may choose someε′ > 0, ε′ < ε, such that

λ1(−�+W + ε′,per) > 0. (128)

In addition, it is clear, using the fact thatϕ2
1 �

1
|x| goes to zero at infinity, that for someR

large enough, (124) implies


−�ϕ1 +Wϕ1 + ε′ϕ1 � 0, onBcR,
ϕ1> 0,
W isQ-periodic,

∫
QW = 0, ε′ > 0,

λ1(−�+W + ε′,per) > 0.

(129)

We are going to see that this implies the exponential decay ofϕ1 at infinity. Let us first
of all fix someθ ∈]0,1[ close enough to 1, and someµ ∈ ]0, ε′[ close enough toε′, such
that

λ1

(
−�+ 1

θ
(W +µ),per

)
> 0.
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This is of course possible because of (128). We then introduce the corresponding
periodic eigenfunctionψper which satisfies




−�ψper + 1
θ
(W +µ)ψper> 0 onR3,

ψper> 0,
ψper isQ-periodic,

∫
Qψ

2
per = 1,

(130)

andψper ∈ L∞(R3). On the other hand, we setα = (ε′ −µ)/(1− θ) and we define the
function

ψ1(x)= e−√
α|x|

|x| .

It satisfies, for any radiusR > 0, and thus in particular for theR appearing in (129),{−�ψ1 + αψ1 � 0, onBcR
ψ1> 0.

(131)

We are now going to show that the function

ψ =ψ(1−θ)
1 ψθper

is a supersolution to the equation in (129), i.e.

−�ψ +Wψ + ε′ψ � 0, onBcR.

Indeed, the point is to remark that by convexity

−�ψ = −�(
ψθ1ψ

(1−θ)
per

)
� −(1− θ) ψ

ψ1
�ψ1 − θ ψ

ψper
�ψper.

Therefore,

−�ψ +Wψ + ε′ψ � ψ

ψ1

[−(1− θ)�ψ1 + ε′ψ1 −µψ1
]

+ ψ

ψper

[−θ�ψper +Wψper +µψper
]

� 0,

in view of (131) and (130). The functionψ is therefore a supersolution.
Because of (128), we know thata fortiori the first eigenvalue of the operator

−�+W +ε′ on any bounded domain with homogeneous Dirichlet boundary conditions
is also strictly positive. Therefore, this operator satisfies the maximum principle on any
bounded domain. We now choose a large enough constantC such thatϕ1 �Cψ on∂BR .
By a standard argument that we leave to the reader, we obtainϕ1 � Cψ onBcR , and, as
ψ has an exponential decay, this yields the expected behaviour ofϕ1 at infinity.

As usual in the concentration compactness approach, the information that we now
have at our disposal on the exponential decay ofϕi will now be used to evaluate in a
precise way the behaviour of the energy.
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For this purpose, we consider the following sequence

ϕ̄n(x)=
√

ρ(x)∑
k∈Z3(ϕ1(x + k)+ ϕ2(x + k+ ne))2

(
ϕ1(x)+ ϕ2(x + ne)), (132)

wheree denotes the unitary vector(1,0,0) ∈ R3.
The functionϕ̄n has been designed in such a way that

∑
k∈Z3

ϕ̄2
n(· + k)= ρ. (133)

In addition, because of the exponential decay ofϕ1 andϕ2 at infinity, we have, for some
δ > 0,

∑
k∈Z3

(
ϕ1(x + k)+ ϕ2(x + k + ne))2 = ρ1 + ρ2 + O

(
e−δn) = ρ + O

(
e−δn), (134)

uniformly onR3. Let us now evaluate the energy ofϕ̄n. Because of (133), we must have
for all n

Iρ �
∫
R3

|∇ϕ̄n|2 − 1

2
D

(
ϕ̄2
n, ϕ̄

2
n

)
. (135)

On the other hand, using (134) and again the exponential decay ofϕ1 andϕ2 at infinity,
we may compute∫

R3

|∇ϕ̄n|2 − 1

2
D

(
ϕ̄2
n, ϕ̄

2
n

) =
∫
R3

|∇ϕ1|2 − 1

2
D

(
ϕ2

1, ϕ
2
1

) +
∫
R3

|∇ϕ2|2 − 1

2
D

(
ϕ2

2, ϕ
2
2

)

−D(
ϕ2

1, ϕ
2
2(· + ne)

) + O
(
e−δn).

Therefore, in view of (115), we have∫
R3

|∇ϕ̄n|2 − 1

2
D

(
ϕ̄2
n, ϕ̄

2
n

) = Iρ1 + Iρ2 −D(
ϕ2

1, ϕ
2
2(· + ne)

) + O
(
e−δn)

= Iρ1 + Iρ2 − 1

n

∫
ϕ2

1

∫
ϕ2

2 + o
(

1

n

)
, (136)

which, forn large enough and along with (135), establishes (118) and contradicts (113).
Step 4: Conclusion.
In the preceding step, we have assumed for clarity that the dichotomy involves two

pieces that are compact (the second one up to a translation). A case that we have on
purpose omitted is the case when one part of the original sequence is compact, while
the other one, vanishes. In that case,ϕ2 ≡ 0 in the preceding proof and therefore (136)
does not allow to conclude. One thus has to use another strategy. What we are going
to show is that the work we have made in Step 2 to exclude the case of vanishing
allows to conclude also in that case. Assume that the original minimizing sequenceϕn
splits into ϕ1 > 0 (the one that is defined at the beginning of Step 3) andϕ2,n such
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that the support ofϕ2,n goes to infinity (in the sense made precise by the dichotomy
assertion), and that moreover vanishes in the sense of Step 2. That is, for any sequence
(yn) of R3, ϕ2,n(· + yn) = (ϕn − ϕ1)(· + yn) converges to 0 weakly inH 1(R3), and,
actually, ϕ2,n converges to 0 strongly inLp(R3), for every 2< p < 6 (see [34]).
Let ρ2,n = ∑

k∈Z3 ϕ2
2,n(· + k). Then,ρ2,n is non-negative,Q-periodic, and, since the

sequence
√
ρ2,n is bounded inH 1

per(Q), it converges (maybe up to the extraction of
a subsequence) to

√
ρ2, with ρ2 non-negative andQ-periodic, weakly inH 1

per(Q), and
strongly inLploc(R

3), for every 1� p < 3, thanks to Rellich’s theorem. We now check
that, necessarily,ρ2 = ρ − ∑

k∈Z3 ϕ2
1(· + k) (and therefore the entire sequenceρ2,n

converges, not only a subsequence). Indeed, by observing that

ρ2,n = ρn − ∑
k∈Z3

ϕ2
1(· + k)− 2

∑
k∈Z3

ϕ1(· + k)ϕ2,n(· + k),

we get

∑
k∈Z3

∫
Q

ϕ1(x + k)|ϕ2,n(x + k)|dx =
∫
R3

ϕ1(x)|ϕ2,n(x)|dx.

We then easily conclude that
∑
k∈Z3 ϕ1(· + k)ϕ2,n(· + k) converges to 0 inL1

loc(R
3),

using for example the two facts thatϕ2,n converges to 0 inL4(R3) and thatϕ1 lies in the
corresponding dual space, that isL4/3(R3). Therefore, we deduce, by convexity, that

lim inf
n→+∞

∫
R3

|∇ϕn|2 =
∫
R3

|∇ϕ1|2 + lim inf
n→+∞

∫
R3

|∇ϕ2,n|2

�
∫
R3

|∇ϕ1|2 + lim inf
n→+∞

∫
Q

∣∣∇√
ρ2,n

∣∣2

�
∫
R3

|∇ϕ1|2 +
∫
Q

∣∣∇√
ρ2

∣∣2.

Moreover, sinceϕ2
n converges toϕ2

1 strongly inLp(R3), for every 1< p < 3, ϕ2
n �

1
|x|

converges toϕ2
1 �

1
|x| strongly inLq(R3), for every 3< q <+∞. Hence, we have

lim
n→+∞ −1

2
D

(
ϕ2
n, ϕ

2
n

) = −1

2
D

(
ϕ2

1, ϕ
2
1

)
.

It follows that

Im,Hper �
∫
R3

|∇ϕ1|2 +
∫
Q

∣∣∇√
ρ2

∣∣2 − 1

2
D

(
ϕ2

1, ϕ
2
1

)

+ 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m). (137)



182 I. CATTO ET AL. / Ann. I. H. Poincaré – AN 19 (2002) 143–190

In order to reach a contradiction, it therefore suffices to exhibit someϕ2 ∈D(R3), ϕ2 � 0,
that satisfies

∑
k∈Z3 ϕ2

2(· + k)= ρ2 and

∫
R3

|∇ϕ2|2 − 1

2
D

(
ϕ2

2, ϕ
2
2

)
<

∫
Q

∣∣∇√
ρ2

∣∣2, (138)

and this is proven exactly like in Step 2. Indeed, we now check that

Im,Hper �
∫
R3

|∇ϕ1|2 +
∫
R3

|∇ϕ2|2 − 1

2
D

(
ϕ2

1, ϕ
2
1

) − 1

2
D

(
ϕ2

2, ϕ
2
2

)

+ 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m),

in the following way. We setϕ(n)2 = ϕ2(· + ne1), and we consider̃ϕn = (ϕ1 +ϕ(n)2 )‖ϕ1 +
ϕ
(n)
2 ‖−1

L2(R3)
as a test function forIm,Hper . Then,Em,Hper (ϕ̃n) = Em,Hper (ϕ1 + ϕ(n)2 ) + o(1), as

n goes to infinity, for‖ϕ̃n − (ϕ1 + ϕ(n)2 )‖H1(R3) goes to 0. Moreover, using the fact that
ϕ
(n)
2 converges to 0 weakly inH 1(R3), it is easily proved thatϕ1ϕ

(n)
2 converges to 0

strongly inLp(R3), for every 1� p � 3. We then check without difficulty, with the help
of arguments detailed before, that

lim
n→+∞D

((
ϕ1 + ϕ(n)2

)2
,
(
ϕ1 + ϕ(n)2

)2) =D(
ϕ2

1, ϕ
2
1

) +D(
ϕ2

2, ϕ
2
2

)
,

and that
∑
k∈Z3(ϕ1 + ϕ

(n)
2 )

2(· + k) converges toρ1 + ρ2 = ρ in Lploc(R
3), for every

1� p < 3. Using (138), we finally obtain

Im,Hper � lim sup
n→∞

Em,Hper (ϕ̃n)

=
∫
R3

|∇ϕ1|2 +
∫
R3

|∇ϕ2|2 − 1

2
D

(
ϕ2

1, ϕ
2
1

) − 1

2
D

(
ϕ2

2, ϕ
2
2

)

+ 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m)

<

∫
R3

|∇ϕ1|2 +
∫
Q

∣∣∇√
ρ2

∣∣2 − 1

2
D

(
ϕ2

1, ϕ
2
1

)

+ 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m),

and this yields the desired contradiction with (137).
Since both cases of vanishing and dichotomy have been ruled out, we thus are in

the case when the sequenceϕn is compact inL2(R3). This concludes the proof of the
theorem. ✷

The purpose of the following subsection is to compare from above the upper limit of
the energy per unit volume in the Hartree setting by the periodic Hartree model, under
symmetries assumptions which are made precise in Proposition 2.1.
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4.4. Upper limit of the energy per unit volume

This section is devoted to the proof of the following proposition which was announced
in Section 2, and which is recalled here for convenience.

PROPOSITION 2.1. – We assume that the Van Hove sequence	 satisfies(41). We
assume here that the unit cellQ is a cube and that there exists a minimizerϕper ∈H 1(R3)

of IHper which shares the symmetries of the unit cube. Then,

lim sup
	→∞

IH	

|	| � IHper +
M

2
, (139)

whereIHper is defined by(30)–(31).

Remark4.1. –
(1) The same result holds in the case of smeared nuclei, if we assume moreover thatm

shares the symmetries of the cubeQ, and defineM according to (40). However, we shall
provide a proof only in the case of point nuclei, the case of smeared nuclei being even
easier to deal with.

(2) In the H setting, since we do not know whether the minimizingϕ is unique (up to
a translation), we are not able toprovethatϕ shares the symmetries of the cube; this is
the reason why this is an assumption in the statement of the above proposition. However,
this assumption is very natural from the physical point of view.

An easy by-product of the above result is the following. The argument which rules
out the vanishing case in the proof of the existence of a minimizer ofIHper, by the
concentration-compactness method, yields in particular that, given aQ-periodic function
ρ � 0 such that

√
ρ ∈H 1

unif(R
3) and

∫
Q ρ = 1, we may find a functionϕ ∈H 1(R3), with∑

k∈Z3 ϕ2(· − k)= ρ (and, thus
∫

R3 ϕ
2 = 1), such that

∫
R3

|∇ϕ|2 − 1

2
D

(
ϕ2, ϕ2)< ∫

Q

∣∣∇√
ρ
∣∣2

(see (97) and (98) in Section 4.3). Therefore, applying this result to the densityρ which
minimizesIRH

per , we make use of the corresponding functionϕ as a test-function forIHper,
to obtain

lim sup
	→∞

IH	

|	| � IHper +
M

2
�EHper(ϕ)+

M

2
<ERH

per(ρ)+
M

2
= IRH

per + M

2
.

Thus, while passing to the thermodynamic limit in the energy per unit volume, the
Hartree model does not degenerate to the modelIRH

per , which would be the case if the
sum of the self-interaction of the electrons was negligible with respect to|	|.

The rest of this section is now devoted to the

Proof of Proposition 2.1. – Let us denote byϕper a minimizer of the periodic H
problem which shares the symmetries of the unit cube. According to the definitions (19),
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(20) and (21) of the Hartree problem, the|	| functionsϕper(· − k), for k describing	,
are test-functions forIH	 , and

IH	 �E	
({ϕper(· − k);k ∈	})

= |	|
[∫

R3

|∇ϕper|2 − 1

2
D

(
ϕ2

per, ϕ
2
per

)] −
∫
R3

V	 ρ	 + 1

2
D(ρ	,ρ	)+ 1

2
U	,

whereρ	 = ∑
k∈	 ϕ2

per(· − k). If we compare now with the definitions (30) and (31) of
the periodic Hartree model, we observe that proving (139) amounts to proving that

lim
	→∞

1

|	|
[
−

∫
R3

V	 ρ	 + 1

2
D(ρ	,ρ	)+ 1

2
U	

]

= −
∫
Q

Gρper + 1

2
DG(ρper, ρper)+ M

2
. (140)

First of all, we write down equivalent expressions for the effective potential�	, with
the help of the definition ofρ	, in the following way.

�	(x)= V	 − ρ	 � 1

|x| = ∑
k∈	

(
1

|x − k| −
∫
R3

ϕper(y)
2

|x − k − y| dy
)
.

We first make the following observation. Sinceϕper shares the symmetries of the unit
cube, and since

∫
R3 ϕ

2
per = 1, we may show the existence of a positive constantC such

that ∣∣∣∣ 1

|x| −
∫
R3

ϕ2
per(y)

|x − y| dy
∣∣∣∣ � C

|x|4 , (141)

for almost everyx in R3 (see [32] and [11]). Let us emphasize the fact that the symmetry
assumption onϕper is crucial for this bound to hold (see more details in [11]). We now
introduce

�per(x)=
∑
k∈Z3

(
1

|x − k| −
∫
R3

ϕper(y)
2

|x − k − y| dy
)
.

Because of (141), the series arising in the right-hand side of the definition of�per is
absolutely convergent onR3 and even uniformly convergent on the compact subsets of
R3 \ Z3. Moreover, since�per is clearlyQ-periodic, and satisfies

−��per = 4π
[ ∑
k∈Z3

δk − ρper

]
(142)

(at least in the sense of distributions), we deduce that, there exists a constantd, such that

�per =G−G �Q ρper + d,
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for G−G �Q ρper is anotherQ-periodic solution to (142). Then, we prove like in [11]
or [32], that

‖�	‖Lp(R3) �C|	|1/p, for all 1� p < 3, (143)

where, otherwise specified,C denotes here and below various positive constants that are
independent of	,

1

|	|
∫


(	)c

|�	|p → 0, for all 1� p <+∞, (144)

and
1

|	|
∫

(	)

|�	 −�per|p → 0, for all 1 � p <+∞, (145)

as	 goes to infinity. From the proof of the existence of a minimizer forIHper, we know
that there exist positive constantsC andµ such that

0 � ϕper(x)� C exp(−µ|x|), a.e. onR3,

and then, the analogous bounds and convergence results are also easily proved forρ	;
that is

‖ρ	‖Lp(R3) � C|	|1/p, for all 1� p� +∞, (146)

1

|	|
∫


(	)c

|ρ	|p → 0, for all 1� p <+∞, (147)

and
1

|	|
∫

(	)

|ρ	 − ρper|p → 0, for all 1� p <+∞, (148)

as	 goes to infinity.
We may now turn to the proof of (140). First, we check that

lim
	→∞

1

|	|
[
−1

2

∫
R3

V	ρ	 + 1

2
U	

]
= −1

2

∫
Q

Gρper + M

2
+ d

2
. (149)

Indeed, we have

1

|	|
[
−1

2

∫
R3

V	ρ	 + 1

2
U	

]
= 1

2|	|
∑
k∈	

lim
x→k

(
�	(x)− 1

|x − k|
)

= 1

2|	|
∑
k∈	

lim
x→0

(
�	(x + k)− 1

|x|
)

= 1

2
lim
x→0

(
�̃	(x)− 1

|x|
)
,
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and it is shown in [11] that̃�	 converges to�per uniformly on the compact subsets of
R3. Thus, thanks to the definition of�per, we get

lim
	→∞

1

2
lim
x→0

(
�̃	(x)− 1

|x|
)

= 1

2
lim
x→0

(
�per(x)− 1

|x|
)

= −1

2

∫
Q

G ρper + M

2
+ d

2
,

which gives (149).
Secondly, we establish that

lim
	→∞

1

|	|
[
−1

2

∫
R3

V	ρ	 + 1

2
D(ρ	,ρ	)

]

= −1

2

∫
Q

Gρper + 1

2
DG(ρper, ρper)− d

2
, (150)

by remarking that

1

|	|
[
−1

2

∫
R3

V	ρ	 + 1

2
D(ρ	,ρ	)

]

= − 1

2|	|
∫
R3

�	ρ	 = − 1

2|	|
∫

(	)

�	ρ	 + o(1)

= − 1

2|	|
∫

(	)

�perρper + o(1)= −1

2

∫
Q

�per ρper + o(1)

= −1

2

∫
Q

Gρper + 1

2
DG(ρper, ρper)− d

2
+ o(1),

as	 goes to infinity. This string of equalities is straightforwardly verified with the
help of (143), (144), (145), (146), (147), and (148). The proof of (140) (and thus of
Proposition 2.1) follows gathering together (149) and (150).✷
4.5. Some final comments on the Hartree type models

Theorem 2.2 deserves some comments, that we list in this paragraph.
First of all, let us notice that Theorem 2.2 provides an existence result of a normalized

(
∫

R3 ϕ
2 = 1) solution to the associated Euler–Lagrange equation, namely

−�ϕ −
(
ϕ2 �

1

|x|
)
ϕ + (

G �Q (ρ −m))ϕ + εϕ = 0. (151)

Existence (and bifurcation) results for this type of nonlinear equation (Choquard–Pekar
equation) have already been obtained by B. Buffoni, L. Jeanjean, Ch. Stuart et al. [7,
8,20–22,50], but as far as we know, the existence of anormalizedsolution was still an
open question. Theorem 2.2 settles this question.
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Secondly, it is usual in Solid State Physics to consider Hartree-type equations of the
more general form

−�ϕ +F(ϕ)ϕ +Wϕ + εϕ = 0,

whereF(ϕ)ϕ is some local correction to the mean-field potentialW . For example,
in (151),W =G�Q (ρ−m) is the electrostatic periodic potential created by the periodic
lattice of nuclei and by the electronic densityρ, while the more usual term−(ϕ2 � 1

|x|)ϕ
takes into account the self-interaction of each electron with itself. Therefore, it seems
to us that the Hartree equation (151) we have obtained is likely to be not so far from
equations used by Solid State physicists.

Thirdly, we must confess it may seem surprising that such an apparently easy
minimization problem, set on the unit cellQ with periodic boundary conditions, leads to
such a complicated proof. However, we have not been able (so far) to simplify the above
proof. In some sense, one can find some relationship between our strategy of proof and
ideas developed by O. Lopes in [37,38,36] for some translation invariant problems of a
similar type.

Finally, let us emphasize again that we do not know of any rigorous proof of the fact
that this periodic minimization problem is indeed obtained in the thermodynamic limit
for anarbitrary Hartree type model. It must be clear to the reader that the only case when
we are able to conclude (Proposition 4.1) is very particular. Nevertheless, we believe it
has some kind of generality. At least, we hope that the present suggestion for a periodic
Hartree model will stimulate further research.

5. Extensions and perspectives

We list in this last section a few comments on the above results, and indicate some
possible extensions of our work.

So far, we have assumed that the periodic lattice that is covered in the limit by the
sequence	 is Z3, and thus that the periodic cellQ is a cube of unit size. The first
basic observation to make is that our whole work goes throughmutatis mutandisif we
replace the cube of unit size by a cube of sizeR. Slight modifications must be made in
the definition of the potentialG in particular, and we refer the reader to [11] for such
modifications.

Replacing the cube by another shape of unit cell is another story. As we have
mentioned above, Theorems 2.1 and 2.2 still hold. So does Proposition 4.1. On the
contrary, our strategy of proof for Proposition 2.1 depends upon the shape of the cell. It
is an open (but rather technical) question to extend this result to other shapes of cells.

Likewise, we have mentioned above that the assumption (41) is a technical assumption
required only for the proof of Proposition 2.1. We recall we believe it can be skipped,
but we do not know how.

Apart from these side issues, the main open problem to tackle is theproof of the
thermodynamic limit for the energy per unit volume in the Hartree model. As far as this
question is concerned, a lot remains to be done.
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Even in some simplified framework, trying to understand Hartree type models for
quasicrystals would also be of interest. Our study [11] and references [1,3,6,45] could
constitute a starting point.

Let us also mention that the periodic problems we have defined in this work can
be treated numerically, and we indeed intend to treat them numerically. Numerical
experiment might in particular give some insight into the mathematical nature of these
models and help oneself to make up his mind on some of the questions mentioned above.

We finally recall from the introduction that the same issues on the Hartree–Fock model
(and some of its simplified form) are studied by the authors in [13].
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