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ABSTRACT. — We continue here our study of the thermodynamic limit for various models of
Quantum Chemistry. More specifically, we study the Hartree and the restricted Hartree model
For the restricted Hartree model, we prove the existence of the thermodynamic limit for the
energy per unit volume. We also define a periodic problem associated to the Hartree model, ar
we prove that it is well-posed. 2002 Editions scientifiques et médicales Elsevier SAS

RESUME. — Nous poursuivons dans cet article notre étude systématique de la limite
thermodynamique de divers modeéles issus de la Chimie Quantique Moléculaire. Nous étudion
plus spécifiguement les modeles de Hartree et de Hartree restreint. Pour le modéle de Hartr
restreint, nous prouvons l'existence de la limite thermodynamique de I'énergie par unité de
volume. Nous définissons également un modeéle périodique associé au modéle de Hartree,
nous démontrons qu'il est bien posé2002 Editions scientifiques et médicales Elsevier SAS

1. Introduction

We consider here the thermodynamic limit (or bulk limit) problem for some Hartree
type models, thereby continuing a long term work that we have begun in [11] with a
similar study in the setting of the Thomas—Fermi—von Weizsacker type models. The
results we have obtained in that framework were summarized in [10], those we shal
obtain here have been announced in [12]. It is to be mentioned that we also conside
in [13] the same problem for the reduced Hartree—Fock and the Hartree—Fock models
For the sake of consistency, we briefly recall now the motivations of our work. We also
say a few words on how this work interacts with other mathematical studies. And we
refer the reader to [11] for a more detailed introduction.

The present work, as well as our previous ones, finds its roots in many mathematice
studies devoted to the mathematical counterpart of problems of Statistical Mechanics
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Briefly speaking, the so-called thermodynamic limit problem consists of examining the
behaviour of models for a finite volume of matter when the volume under consideration
goes to infinity. Since the energy is an extensive thermodynamic quantity, it is expecte
that the energy per unit volume goes to a finite limit when the volume goes to infinity.
It is also expected that the function representing the state of the matter goes also to
limit in some sense. To fix the ideas, let us make precise these questions in the case
an infinite crystal and in the setting of a model of the density functional theory. We shall
see extensions of this simplified setting later on.

Consider a finite number of nuclei, each nucleus being of unit charge and being locate
at a pointk = (k1, ko, k3) of integral coordinates iR3, which is the center of a cubic unit
cell Or = {(x1, x2,x3) € R% —3 <x; —k; < 3, i =1, 2, 3} (with the convention thaP
will be henceforth denoted b@). The set of the positions of these nuclei is then a finite
subsetA of the set of all points of integral coordinates thaZisc R3. The union of all
cubic cells whose center is a point afis denoted byl (A); its volume is denoted by
|A|]. Since each cell has unit volume and each nucleus is of unit chaxgés also the
number of nuclei and the total nuclear charge.

Suppose that fon c Z32 fixed, we have a well-posed model for the ground state of
the neutral molecule consisting A| electrons andA| nuclei located at the points
of A. Let us denote by, the ground-state energy, and py the minimizing electronic
density.

Then, the question of the existence of the thermodynamic (or bulk) limit for the model
under consideration may be stated as follows:

(i) Does there exist a limit for the energy per unit voluq%?l,\ when|A| goes to
infinity?

(i) Does the minimizing density, approach a limitp., (in a sense to be made
precise later) whehA | goes to infinity?

(iif) Does the limit densityp,, have the same periodicity as the assumed periodicity

of the nuclei?
We shall not deal here with the physical background of this theoretical problem, and we
refer the reader to the textbooks [4,51] and articles [26,30]. We prefer to concentrate
ourselves on the mathematical works that are devoted to this difficult question.

The models we shall consider are models arising in Quantum Chemistry, and therefor
models that are only valid at zero temperature. From the mathematical viewpoint, the
thermodynamic limit problem has been extensively studied, in the zero temperature cas
as well as in the case of strictly positive temperatures.

A brief historical survey should go as follows. The story has really begun with Fischer
and Ruelle, who have proved the existence of the thermodynamic limit for the (classica
or quantum) microcanonical, canonical, and grand canonical ensembles for a system
particles inR? (see [44], and references therein). It is worth noticing that their proof
did not cover the case of a long range interaction like the Coulomb interaction. It is
only in the late sixties that Lieb and Lebowitz, using a result by Dyson and Lenard,
proved the existence of the thermodynamic limit for real matter, i.e. with Coulomb forces
(see [25-27,24]). This undoubtedly constitutes the first milestone of the mathematica
understanding of these problems of Statistical Mechanics. The proof has next bee
extended by Lieb and Narnhofer [31] in 1974 to deal with the case of Jellium, that is
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to say to deal with a model where the electrons are immersed in a uniformly positively
charged background.

In 1985, Fefferman laid the second milestone by proving in [17] the existence of the
thermodynamic limit for a crystal, in the statistical setting. For the first time, a statistical
model of a non spherically symmetric matter was treated in this respect. With slight
modifications, Fefferman’s proof has been extended by Gregg in 1989 ([18]) to treat
Coulomb-like interactions. Let us emphasize that the two main difficulties that we have
just identified, namely the long range nature of the Coulomb potential and the (obvious]
lack of spherical symmetry of the periodic lattices, will be of course also present in our
work.

In this very brief survey, we have on purpose omitted to mention the ground-breaking
work [32] by Lieb and Simon on the thermodynamic limit in the framework of the
Thomas—Fermi theory (TF Theory for short). Indeed, this work is at the origin of our
own study [11] on the Thomas—Fermi—von Weizsacker model (TFW model for short),
and has therefore a far larger impact on our work than the, however fundamental, work
that we have quoted above.

At this stage of our short presentation of the state of the art of the mathematical
knowledge on thermodynamic limit problems, we find it useful to briefly recall now
the results that we have obtained in [11] on the Thomas—Fermi—von Weizsacker mode
Indeed, many of the concepts and techniques that we have used in [11] (some of the
being inherited from Lieb and Simon, some others being especially introduced by us ir
order to treat the TFW case) will be useful here. Moreover, recalling the complete result:
we have obtained in the TFW case will help the reader to place the results we shal
obtain here on the Hartree model in this context. It is also to be remarked that our result
on the TFW model include Lieb and Simon results on the TF model (suppress simply
the gradient term in the energy functional and make the quite obvious corresponding
modifications in the sequel).

The Thomas—Fermi—von Weizsacker model for the neutral molecular system de
scribed above is an improved form of the standard Thomas—Fermi model, and reac
as follows

ITFW Inf{ETFW(p) 4+ = Z
2 Y#ZEA |y Z|

p>0, JpeHY(RY, /p=|A|}, @

4
ETFW<p>—/|Vf| +/ o~ /( _k|)p<x)dx
) e

The TFW (and as well as the TF) model belongs to a large class of models that i
today identified as the models arising in Density Functional Theory: we refer the reade
to[14,41] for an introduction to the general features and the physical foundations of sucl
models. Mathematically, it is a well-known fact that the problem (1)—(2) has a unique
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minimizing density, denoted by, (see Lieb [29], Benguria et al. [5], or Lions [35]),
and that, denoting, = /o, ux is a solution to

5
—AMA+ |:§p[2\/3—q>A:|MA:—9AuA, (3)

where we denote by
1 1

b, = — * —
A ];|x_k| PA x|
the effective potential the electrons experience, and whgre 0 is the Lagrange
multiplier associated to the constraint in (1).

In our previous work [11], we have proved that the three questions (i)—(ii)—(iii) of the
thermodynamic limit problem that we have asked above can be answered positively il
the setting of the TFW theory. More precisely, let us first of all introduce the periodic
potentialG uniquely defined by

—AG =4 (—1+§35(-—y)), (4)
and
Q/ G=0, (5)

and then define the following periodic minimization problem set on the unit@eif
the lattice

Ipe'" = inf {ESEM)); p=0, JpeHL(0), / p= 1}, (6)
0

EJQVV(p)=/|Vﬁ\2+/p5/3—/p<x)6(x)dx
0 0 0
1
+§//p(X)p(y)G(x — y) dx dy, (7)
0%0
where

Hyo(Q) = {u € Hg(R®), u periodic inx;, i = 1,2, 3, of period 1.

The main results we obtain in [11] may be stated as follows (we need technical
assumptions that are irrelevant in this introduction and that we therefore do not make
precise here): up to an additive constait2 that only depends off through

M=I1lmG((x) — i, (8)
x—0 |x|
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and which is just a matter of normalization, we have convergence of the TFW energy pe
unit volume to the infimun? 5, moreover the density, minimizing 1{™ converges
(uniformly locally, at least) to the unique periodic dengify, minimizing 7,¢"".

In view of these results, the reader may understand the main two motivations of
our whole work. Our purpose is twofold: first, we want to check that the molecular
model under consideration does have the good behaviour in the limit of large volumes
second, we wish to set a limit problem that is well-posed mathematically and that can b
justified in the most possible rigorous way (in particular with a view to give a sound
ground to the numerical simulations of the condensed phase). As far as this secon
aim is concerned, it is clear (at least we hope it is) from the above formulae that one
keypoint for the definition of the periodic problem is the definition of laws of interaction
between patrticles, i.e. of the interaction potential(s). In the TFW setting, the second ain
was less prominent since the potentfalis the same as the one appearing in the TF
setting and the periodic minimization problem is rather easy to guess in view of the one
arising for the TF theory. Likewise, it is easy to check that this periodic minimization
problem is mathematically well-posed. In other words, taking benefit from the work by
Lieb and Simon who had already defined the TF periodic problem, the idea to introduce
the periodic problem (6)—(7) was straightforward. In [11], our “only” contribution was
therefore to prove that the TFW model does converge in the thermodynamic limit to (6)-
(7). The purpose of the present work is the study of the thermodynamic limit problem
in the Hartree setting. We shall see below that the guess on the periodic problem is nc
so obvious in the Hartree model. Consequently, the mere definition of the limit problem
turns out to be a substantial piece of the work (writing a periodic problem that has some
rigorous mathematical sense is not straightforward). This paper is aimed at describing i
It will certainly be rather clear to the reader that the questions we tackle here in trying tc
define as rigorously as possible periodic problems in the Hartree framework are indee
close to questions of interest in Solid State Physics, both for theoretical and numerice
purposes. For the sake of brevity, we shall not detail here the relationship between ot
work and Solid State Physics. We only mention some references here, namely [23,40
and also [2,4,9,39,42,47,48,53], and refer the reader to some future work of our own
Because of the complexity of the Hartree setting, we shall not be able to do in this setting
everything we did in the TFW setting, namely proving the convergence of the energy
per unit volume in the thermodynamic limit. We shall indeed prove the convergence of
the energy per unit volume in the thermodynamic limit for a simplified Hartree model
(namely the restricted Hartree model, treated in Section 3). Furthermore, we shall prov
the convergence of the energy per unit volume for one very peculiar form of the true
Hartree model (see Section 4), but our efforts to prove it for the generic form of the
Hartree model have failed so far. From the single example we have in hand, and fron
more general considerations, we shall however deduce a general form for a periodi
Hartree problem that is likely to be the thermodynamic limit of the Hartree model. We
shall prove, still in Section 4, that this periodic model defines a mathematically well-
posed minimization problem.

Let us finally mention that the Hartree—Fock setting is discussed by the authors in [13]

But before all, let us devote Section 2 to the definition of the general setting we shall
work in, and to the detailed presentation of the results we shall establish.
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2. General setting of the models and main results

Let us begin this section by defining the molecular models we shall deal with in this
article. There are two of them, namely on the one hand the Hartree model and, on th
other hand, its simplified form, the restricted Hartree model. For the sake of brevity, we
shall often abbreviate these models in the H and the RH models, respectively.

We recall from the introduction that, for eadh finite subset oZ 2 c R?, we consider
the molecular system consisting of th#&| nuclei located at the points of, and|A|
electrons. We shall henceforth denote by

1
Vax) =) — 9)
keA | B |
the attraction potential created by the nuclei on the electrons, and by
1 1 1
ZUyN=Z= 10
2°47 2 Z |m — n| (10)

m,ne\, m#n

the self-repulsion of the nuclei.

As in [11], we shall also consider the case when the nuclei are not point nuclei but are
smeared nuclei. In that case, each Dirac mass located at akpaiint is replaced by a
compactly supported smooth non-negative function of total mass one, typically denote
by m(- — k), and “centered” at that point af. The regularity of the functiom does not
play a great role in the sequel, and therefore we shall assume without loss of generalit
thatm is C*. The potential (9) and the repulsion (10) are then respectively replaced by

Vil(x) = Zm (1))
keA
1
—U,’(’——D(Zm( +k), > m(: +k)>——|A|D(m m). (12)
2 2 keA keA
In the above equation, we have as usual denoteB by-) the double integral defined as
follows
(x) f( )
D(f. f) = //f fu (13)
=l
It will be convenient to introduce in thls setting the function
mA:Zm(-—k). (14)
keA

In this setting of smeared nuclei, we shall also make use of the effective pot@nptial
defined for each electronic densjy as follows

1
Op = (mpa—pa)*x T (15)



I. CATTO ET AL./ Ann. I. H. Poincaré — AN 19 (2002) 143-190 149
It is now time to recall the properties of the sequence of Aetisat we shall consider.
For the sake of completeness, we recall here the following definition taken from [11].

DEFINITION 1.— We shall say that a sequenca; ), 1 of finite subsets @3 goes to
infinity if the following two conditions hold
(a) For any finite subseft C Z3, there exists e N such that

Vjizi, ACA,.

(b) If A" is the set of points iR® whose distance t8I'(A) is less than h, then

Al
14/ 0, Vh>0.

i—oo |A;| o

Condition(b) will be hereafter referred to as the Van Hove condition.

Briefly speaking, a sequence satisfying the Van Hove condition is a sequence fo
which the ‘boundary’ is negligible in front of the ‘interior’. A sequence of large cubes
typically satisfies the conditions of Definition 1. We shall only consider henceforth Van
Hove sequences going to infinity in the sense of the above definition. Following the
notation of [32,11], we shall write henceforth lim ., f(A) instead of lim_, o, f(A;).

We now need to define the following useful functional transformation, that we have
already used in [11], and which will be again very efficient in the present work.

DEFINITION 2.— For a given sequencd and a sequence, of densities, we call
the ~transform ofp, and denote by, the following sequence of functions

1

= mZPA('+k).

keA

oA
We finally introduce

1 dy
f(x)=m— x — |,
o y

next

keA

=3 (g _Q/|x i) (o

It is convenient to rewritef, as

1
Ja=Va—xru)* T (17)
where, more generally, we shall denote jgythe characteristic function of the domain
Q. Besides, it is proved in [32], and recalled in [11], that, whis a cube,

C
If (o] < 7 (18)

x|
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almost everywhere orR3, for some positive constanf, and that f, converges
to the periodic potentialG + d, for some real constard independent ofA, uni-
formly on compact subsets &2\ Z3. Moreover, for any compact subs&t of R3,
fa = 2kenrk or k‘ converges uniformly ok t0 G +d — > yezenk 7o k (see [32]).

We shall make use in the sequel of the following notatiorf Iis a functlonal space,
we denote byH,ni(R3) the space

Hynit(R%) = {¢ € D'(R®) /¥ € H(x + Q) Vx € R®, sup||¥/ | s x+-0) < 00}

xeR3

In addition, we shall also simply writ¢ , g instead off x (xo g).
We are now in position to introduce the molecular models we shall deal with. The
Hartree model is defined as follows.

. 1 ,
If:lnf{Ef(cpl;...;<pA)—|—§UA;<pieHl(Rs), /%2:1, 1<z<|A|}, (19)

R3

|Al

E,’f(wl;...;w\A\)— (/IV%I ——D(I<p,| i1 ) /VA,O+ D(p,p), (20)

with
IA|

p=>Y_lpil> (21)
i=1

The Hartree model was historically introduced by Hartree in [19]. It is a well-known fact
that, for any subset of R3, this minimization problem is attained by at least one vector
(915 .. .5 9a1), With ¢; > 0 for every 1< i < |A] (see the works by Lieb and Simon
in [33] and by Lions in [35]).

In the smeared nuclei case, the energy functional of the Hartree model reads as follow

|Al

EK’”(wl;...;wm— (/|w,|2——D(|<pl|2 g, |7 ) /Vg"p+ D(p, p), (22)

and the minimization problem can therefore be written in the following more concise
form

|A|
o 1 1
= mf{Z(/ Vil ~ 5D (1l |<p,-|2)) 5D —map—m)

i=1 ‘3

1
= 5IAID(n,m); ¢; € HY(RY), /w,?: 1,1<i< |A|}, (23)
R3
where we recall thak: 4 is given by (14).

As announced above, we also define the restricted Hartree model, obtained from th
standard Hartree model by introducing the self-interaction between elecamh itself
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in the energy functional. In the point nuclei case, this model reads

. 1 .
1§H=|nf{EEH(§01; ---;¢\A\)+§UA;§01' GHl(R3), /‘P,z =11<i< |A|}» (24)
3

[A|

Eps o) = [ 31l —/vAp+ D(p, p), (25)

R3 = =1
with p being defined as in (21). It is obvious that, for Al

ERH> BN, (26)

and thus
I (27)

In the smeared nuclei case, the energy functional of the restricted Hartree model reac
as follows

|A]
EY RH(wl,...,wmo— /IV% /V,(”p+ D(p, p), (28)

and the minimization problem can therefore be written in the following more concise
form
A

I = lnf{2/|w,|2+ D(p—mp, p— mA)——|A|D<m m);
i=1

¢ € HY(RP), /¢5=1,1<i<|A|}. (29)

In view of the periodic problem that we have obtained in [11] for the TFW model, it is
rather natural to introduce the following minimization problem, that we intend to relate
with the Hartree model witlA fixed:

Lot = |nf{E§;,(<p);<p e HY(R), /|<p|2: 1}, (30)
R3
where the periodic energg” is defined as follows
1
Ef,(¢) = /|v¢|2_ SDUP.10P) = [ Go+5D(p. p). (31)
with

p(x)=>_ lpl*(x +k), (32

kez3
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and the following notation that we shall adopt henceforth (in the spirit of the
notation (13))

De(f. f) = / / FOG@ — y) £ (y) de dy. (33)
0 0

We recall thatQ denotes here and henceforth the unit cqb§,+%]3. On the
other hand, for the restricted Hartree problem, we introduce the following minimization
problem

I = inf{Eﬁe“r(m; p 20, /p € HplQ), / p= 1}, (34)
0]

where we denote bﬁpler(Q) the set of allQ-periodic functions in#,}(R®) and where
the periodic energy functionafR" is given by

1
R = [ vyl = [ Go+5Dc(. ). (35)
0] o

It is easy to show that the minimization problem (34)—(35) admits a unique minimum
(the same property will hold true in the smeared nuclei setting below). We now define
the periodic H and RH problems in the smeared nuclei case.

L = inf{ES’é{’ (¢); ¢ € H'(R®), / )% = 1}, (36)
R3

where the periodic energyy” is defined as follows

1

1 1
Ep'(p) = / IVol* = 5D(I¢l, 19I%) + 5D (p —m, p —m) = 5Dg(m,m),  (37)
R3

with the periodic density being related t@ through (32).
On the other hand, for the restricted Hartree problem, we introduce the following
minimization problem

=it B 020 VP L. [p=1}. @)
0
m,RH 2 1 1
0

The main purpose of Section 3 will be to prove the following result on the
thermodynamic limit of the RH problem.
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THEOREM 2.1 (Thermodynamic limit for the RH energy). ka the point nuclei case,
we have

NN N
i =i

where the constan¥ is defined by(8). Likewise, in the smeared nuclei case, we have

m,RH

M
R A _ tm,RH
Am, |A] =l 5
whereM is this time defined by
M = //m(x)m(y) [G(x —y)—1/|x — yl] dx dy. (40)

oxQ

We shall also make there some comments on this result.

As far as the Hartree model is concerned, we shall extensively present our point o
view in Section 4, but let us already emphasize here that our main result will be the
following one, which states that the minimization problem we have defined above is
mathematically well-posed.

THEOREM 2.2 (Well-posedness of the H periodic problem).Fae minimization
problem defined b§B0)—(31) (espectively by36)—(37))admits a minimum. In addition,
any minimizing sequence (80)—(31) (espectively(36)—(37))is relatively compact in
H(R®), up to a translation.

Is is to be mentioned here that in the proof of the above theorem, we shall make us
of the concentration-compactness method [34].

As announced in the introduction, we shall also see in Section 4 that, for a very
particular choice of smeared nuclei, we are able to prove the convergence of the Hartre
energy per unit volume to the periodic energy (30). We refer the reader to Proposition 4.
below. We also prove in Section 4.4 the following.

PrROPOSITION 2.1. — We assume that the Van Hove sequeficgatisfies

|A"

lim — Log|A"| =0, Vh>0, 41
Am a7 HogIA > (41)

whereA” is defined in Definitiorl. We assume here that the unit céllis a cube and
that there exists a minimizefper € H*(R3) of 1%, which shares the symmetries of the
unit cube. Then,

e M
limsup—2& <17 4+ —,
A—>oop|A| per+ 2

wherel is defined by30)—(31)

per

As announced in the introduction, the sequel of this paper is devoted to the proofs o
the above results. We shall also give some complements.
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3. Therestricted Hartree model

We devote this section to the thermodynamic limit problem of the so-called restricted
Hartree model (RH model for short). We shall see that we shall be allowed to extenc
to this setting most of the methods introduced in [11] in order to prove that the TFW
energy has a thermodynamic limit. Of course this study can be seen as a step towards t
study of the complete Hartree model (H for short) that will be addressed in the following
section. We shall see however that despite their relative formal resemblance, the RI
model, on the one hand, and the Hartree model, on the other hand, do behave in a ve
different fashion, as far as the thermodynamic limit problem is concerned. For the time
being, let us concentrate on the RH model.

Let us now recall the definition we have given in Section 2 above of the restricted
Hartree model. For the sake of brevity, we shall only consider in this section the case o
point nuclei. Actually, the case of smeared nuclei is easier to treat, and we leave it to th
reader.

For every finite subset of Z3, the RH model is defined as follows:

: 1
= Inf{E[FfH(ng; cos o)+ EUA;

VI<i<IAL g e HYRY), [ of =1}, (42)
with R?
rH al PP
E} (<P1,-..,<P|A|)—/Z|V¢l| —/VA,O+2 // . dy, (43)
rs =1 R3xR? Y

p = Z‘A lg:|%, and where we recall thalt, (x) = 2y ATl . If we compare with
the complete Hartree model given in (19)-(20), we may note that only the interaction
between the electrons has been modified and has been replaced by a mean-field poten
which is the same for each of tha | electrons. In other words, the self-interaction of
each electron has been reincorporated into the energy functional.

We show now that, due to this modification, this infimum is the same as

1
nf{ £ (o) + SUni 20 Vpe HHRY). [p=Ial}. (44)
R3
with
1 X
EX o = [1vval' = [van+ [[ Z2E P aray. (45)
R3 R3 R3xR3 * Y

Indeed, we first recall from [35] that, on the one hand, the infimum defined by (44)-
(45) is achieved by a unique positive functipfi™ (the uniqueness coming from the
strict convexity of the functionab — ERM(p) defined by (45)). On the other hand, the
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infimum in (42) is attained byA | positive functionsp;, for 1 < i < |A|. In addition, for
every 1<i < |A], ¢; satisfies

1
_A(/)i_VA(/)i+(p*ﬂ>‘pz+‘9‘pz—o onR?, (46)
for somed; > 0. This latter claim comes from the fact that, since = |A|, the positive
part of the spherical average of the potentidV, + (o ‘71‘), which is identically 0,

lies in L¥?(R3). Then, we may apply a result of Lieb and Simon in [32]. Therefore,
sincey; > 0 and since—V, + (p —) also belongs ta.” (R®), for somep > %

@; is the (unique) positive normallzed eigenfunction associated to the first eigenvalue
of the operator— A — V, + (p * P ‘) on R3, and the corresponding eigenspace is
of dimension 1 (see for example, [46]). We thus conclude ¢hat --- = 6, and

pr="---=@] (= JW“/_) Then, returning to (46), we deduce thatflsacritical

point for E]H. Since the functiongb — ER"(p) is strictly convex and sincg satisfies
the right charge constraint, we conclude tpas the unique minimizer o£RH, that is
pRH. Our claim follows.

From now on, with a view to proving the existence of the thermodynamic limit for the
energy per unit volume for thRH model, we shall essentially use the expression (45)
for the energy and identify} with (44). It is therefore to be emphasized that we deal
with a sequence of minimization problems which are of density functional type: only the
electronic densityp appears in the minimization and not the electronic wavefunctions
initially involved in (43). Consequently, we shall be able to use most of the machinery
developed in [11] to treat the TFW model. As far as the thermodynamic limit for the
energy per unit volume is concerned, this machinery (in particular the trick that consists
of approximating the Coulomb problem by a problem where the interaction is of Yukawa
type) will be effective and really allows us to determine the behaviouE®f/|A|
(see Theorem 3.1 below). Unfortunately, we have not been able to use it in order tc
determine the behaviour of the density, apart from some very basic results that will
be mentioned below.

We shall relate the thermodynamic limit of the restricted Hartree model with the
periodic minimization problem defined by

1t =int{ By 0> 0. Vp e b0, [0 =1}, 47)
0

where

ER(p) = / v.ol? - / Go+ 5 / / p(p(MG(x —y)ydvdy.  (48)
oxQ

Before turning to the thermodynamic limit problgyar se let us first give some results
on the existence and the uniqueness of the minimizéRpf

LEMMA 3.1 (Properties of 7). — Let I} be defined by47) and (48). Then, I3}!!

per per

is achieved by a unique positive functippr, uper = /Pper € per(Q) N L*®(R%), and
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satisfies

_A”per - Guper + (/G(x - J’)pper()’) d)’) Uper + Operuper =0, on R3, (49)
0

for some real numbefye,.

Proof of Lemma 3.1- The existence and the uniqueness of a minimizé,f;bﬁollows
from the following observations. Sinag is periodic and since the functio — ﬁ is
continuous and bounded a, it is easy to check thaiyy! is finite. Indeed, on the
one hand, it is easily seen , by using for example the Fourier series expansion of th
periodic potentialG (see [32]), that the quadratic forghi— D¢ (f, f) is non-negative.
On the other hand, sing@ is in Lﬁ{ff(R:“), for everye > 0, there is a positive constant
k(e) such that we may decomposginto G = G1 + G with [|G1| .~ < k(¢) and
G2l 320y < €. Now let p > 0 be such that = /p € leer(Q). We first notice that
0< fQu < 1 because/, u? =1, and from Schwarz’s inequality. Therefore, we have,

using first Holder’s, and then Sobolev—Poincaré’s inequalities,

Efp) > [ 1Vul? = [ Geouto ds

0 0
> [19uf = k@) [u? = ellulie,
o 0

> (1—2¢) / |Vul? — k(e) — Ce,
(¢

for some positive constaudt, that is independent efandu. We conclude by choosing
small enough.

By the way, the same argument shows that every minimizing seql,yzglmxfelph,;r is
such thau, = ,/p, is bounded ierler(Q). Then, extracting a subsequence if necessary,
we may assume that, converges weakly inf ). (Q), strongly in L{;(R®) for all
1 < p < 6 (from Rellich’s Theorem) and almost everywhere®h The limit is then
a minimizer of1%,,. The uniqueness of the minimizer follows from the strict convexity
of the functional.

In addition, sinceG is in Lﬁmf(R3) for all 1 < g < 3, it is clear from (49) that

— Autper is in Ly for every 1< p < 2. Thus,u € W.i. In particular, from Sobolev's
embeddingsy € L*(R®). In fact, by a standard bootstrap argumeri in Wuz,;ﬁ ncoe,
forevery 1< p<3andO<a<1l. O

Let us turn now to the thermodynamic limit problem we are interested in and prove
first the following:

LEMMA 3.2. — For every Van Hove sequenc¢a), we have

N M
limsup—2— < [RH 4 —, 50
Amlo|A| per + > (50)
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Proof of Lemma 3.2- The proof is immediate once we have noticed that, far all0,
<y, (51)

where the notation’ [V stands for the usual TFW problem we have studied in [11],

with ¢ as a coefficient in front of the Thomas—Fermi tefga 0> in the definition of the
TFW functional; namely

£ =[5t ee [ - [ (%
kEA

]

R3xR3

_ka@Mk

ITFW Inf{ETFW(p) + = Z
y;ézeA |y - |

220 JBe 'R, [p=alf. (63
R3
Next, in view of the results of [11], we obtain from (51), and for every O,

H TFW

I, M
limsup—2 < lim 28 —TPwW, = 54
A—>oop|A| A—oo |A per,e + 2 ( )

where, obviously/ 7Y is the periodic TFW model with a multiplicative parametein

er,&

front of the term/,, ,o5/3 in the definition of the TFW periodic functional; namely

L= mf{E,IErVZ(p); p =0, /p € Hy(0), / p= 1}, (55)
o

EZZVZ(p)=/|Vﬁ|2+e/p5/3—/p(x)6<x)dx
0 0 0
1
+5 [ [ pp)Ge =y ardy. (56)
0xQ
Assertion (50) follows now by letting go to 0 in (54), and by comparing with the
definition (47) of 1. O
We next prove the existence of a bound from below for the energy per unit volume in
the RH case.

LEmMA 3.3. — For every Van Hove sequenc¢a), we have

. Lﬁ“ R M
Imlgof A = Ioer + > (57)
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Proof of Lemma 3.3- Our strategy of proof will consist of comparing from below
I”H with the corresponding minimization problem where the Coulomb potential has
been replaced by a Yukawa potent%f%, a > 0, and then letting: go to 0. Let
us recall that the same strategy has already been used in [11] in the TFW setting. W
shall therefore only sketch the main lines of the proof and refer the reader to [11] for the
details.

We thus define, for every > 0,

1
Ij{:inf{Ej((,o)—i-éU“; p=0, . /pe Hl(R3), /,o=|A|}, (58)
R3
with
1
Ei(p)=/\Vﬁ\2—/Vﬁp+§ // p(x)p(y)V(x — y)dxdy, (59)
R3 R3 R3xR3
exp(—alx
Va(x)=%, Vi) =) Vix—y), and Ui= > Vi(y—2.
yeA y,Z€A
y#2

It is clear that we may choosesmall enough such thdt is achieved for all finite
subsetA of Z3. In addition, by using the methods of Chapter 2 of [11] for the upper limit
and the ones of Chapter 3 of [11] for the lower limit, it is easy to check that

a

P IA a

for any Van Hove sequende\), whereu, and I5e(pa) are defined just below. We set
a R a 1 a 1
e =108 Egel(p) + SUL:i 0> 0, /B € Hia( @), [ 0 =110,
0

with

1
Eseo) = [ [Vl = [Vampwds+ 5 [ [ ppmv e =y dudy,
0 0 oxQ

Vi)=Y Vix—y), and Ui= > Viy—2).
yez3 y,z€23
y#z
Finally the masg., is defined as follows. We denote py,, the unique minimizer of
Ege onthe selp >0, ,/p € Hy,(Q)}. Then, we defing, = min(, [, pfe,)- (All these

per
definitions are justified in [11].) Arguing as in Chapter 2 of [11], we may prove that

lim p, =1,

a—0t
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and that
Nim Tger(ta) = Iogt + 7 (61)
To conclude, we argue now as in Chapter 3 of [11], to check that

IRH Ia
A —Ca,
|A] IAI

for some positive constand that is independent ak. Next, we letA go to infinity in
the above inequality and use (60) to obtain

RH

liminf o > I C
I _)IOO m per(/’ba) —La.

(57) then follows by letting: go to 0 and by using (61). O

Remark3.1. — In the case when the unit cell is a cube, it is possible to prove the
above lemma by a different argument which does not use the comparison with a Yukaw
potential. Indeed, as in [11], we may use thdransform trick and prove directly the
lower bound. Of course, this argument relies upon the convexity of the RH functional
with respect to the electronic density.

As a consequence of (50), we may prove that

COROLLARY 3.1 (Compactness). et p, be the minimizer of }H, then

1
— — 0, asA — oo.
IA] /"A

T'(A)¢

The analogous result holds true in the Hartree setting, and a proof is sketched in thi
setting (see the proof of Lemma 4.3 below).

Remark3.2. — This property means that, asymptotically, th¢ electrons remain
in T'(A); that is, in a box of volumeA|. In other words, we could also say that no
electrons have escaped to “infinity”; this is the reason why this property is referred to ac
“compactness” in [11].

Finally, collecting Lemma 3.2 and Lemma 3.3, we have proved the following

THEOREM 3.1 (Thermodynamic limit for the energy in the RH model)Fer every
Van Hove sequenadg\),

N R M
AIquo 1Al Tper + o (62)

Let us make some comments. Having proved the existence of the thermodynamic limi
for the energy per unit volume for the RH model, we may prove as in Chapter 5 of [11],
some preliminary convergence results concerning the convergence of the densities. |
particular, we may show that the-transform ofp,, o4, converges to the minimizeie,



160 I. CATTO ET AL./Ann. . H. Poincaré — AN 19 (2002) 143-190
of Ip’é,, or, even, thap, (- + ya) converges teper in H1(Q) for somey, € A. However,

we do not know how to improve these (weak) notions of convergence of the densities
Indeed, in the framework of the RH model, we are not able to establish unifétm
bounds (for example) for the densities as in the TFW case, since the bounds obtained
that setting are based upon the specific hature of the power nonlinearity which arises i
the Euler—Lagrange equations (see [11] for the details). Another point which is relatec
to the previous one is that we do not know whether there exists a unique sdlutidn

to the system

—Au—du=0 onR3,

uz>0, u##0,
—Aq>:4n{28k—u2},
kez3

without prescribing boundary conditions anor @ (like periodicity or conditions at
infinity, for example). On the contrary, we have proved in [11] that the analogue of the
above system in the TFW setting, which can be written as

—Au+u®—du=0,

u>0 uz#0,
—Aq>:4n{28k—u2},
kez3

admits a unigue (thus periodic) solution.

4. TheHartree mode

Let us first of all recall the Hartree model which will be the subject of this section:

. 1
11’\":lnf{Ef(cpl;...;<pA)—|—§UA;<pieHl(R3), /(p =1,1<i< |A|} (63)
R3

[Al

1
Ef(wl;...wpmo:Z(/|V<pi|2—§D(l<pl| i) ) /VAp+ D(p, p), (64)

i=1 Y3

where as usual we denogpe=>"1"! |¢;|2

In view of the energy functional (63) which clearly is a sum of a functional involving
the ¢;’s explicitly and a functional depending only on the dengitgnd not on they;’s
themselves, it is rather natural to isolate the part depending explicitly op; $eand
therefore to introduce the following auxiliary minimization problem

Iczinf{Ec@);(/)EHl(Rs)v /|¢|2=1}, (65)
R3
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with

1
Ec(p) = [ IVel? = 5D (1o 0P, (66)
R3

which is nothing else but the well-known Choquard problem. For the convenience of the
reader, we mention here that the fact that- —oo is a straightforward consequence of
the following string of inequalities

D(‘/’zv ‘/’2) < C||¢’2||iﬁ/5(R3) = C”‘/’”ilz/?’(R'ﬁ‘)
<Clgll2gs 9l 5rs) < CIVOll2w3), (67)
whereC denotes various positive constants that are independenttioé last inequality
being true sincezs 2 = 1. The existence and the uniqueness of the minimizer of (65)
are subtler facts proven in Lieb [28].
As a matter of fact, the Choquard problem will play a central role in our analysis of
the thermodynamic limit for the Hartree energy. We shall see that below, but let us for

the moment concentrate ourselves on dhgriori estimates that we may show on the
Hartree energy per unit volume.

4.1. A priori estimates and consequences

The first estimate is rather straightforward, since it is a simple consequence of Lemm:
3.2 and of the fact that the Hartree energy functional is clearly bounded from above by
the restricted Hartree energy functional:

LEMMA 4.1. — There exists a constaut such that, for any Van Hove sequenae),

¥ ¢ (68)
Al

Let us now turn to the existence of lower bound for the energy per unit volume. Of
course, we cannot use any more the analogous results for the restricted Hartree mod
Nevertheless, we have:

LEMMA 4.2. — There exists a constaut such that, for any Van Hove sequen@e),

Iy

TN (69)

Proof of Lemma 4.2- Let us first prove this claim in the case of smeared nuclei, and
we shall next explain how we proceed with minor modifications in the case of point
nuclei.

We recall the expression (22)—(23) for the energy in the case of smeared nuclei

1Al

. 1
EX (g ...;¢|A|)=Z{/IV¢,~I2— ED(fp,?, )
i=1 R

1 1
+§D(mA_pA»mA_pA)_§|A|D(m»m)- (70)
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Since the termD(m — pa, ma — pa) IS NON-Negative, it follows that

o S -t o
|A| A (plv---9(p|A| /lAl Qi 2 ‘p,a‘p, 2 m,m

1
>Ic—§D(m,m), (72)

using the definition that we have recalled above of the Choquard problem.
In the case of point nuclei, arguing as in Chapter 3 of [11], we rewrite the expression
for I = Efl(of's.. i 0fi) + % as

|A]
If— [/vazl——Dw,,w,} /prA

1 1 1
+ ED(XF(A) — PA> XT(A) — PA) + EUA - ED(XF(A)a AT(A))> (72)

where f, is defined through (16). As before, we begin with noticing that the first sum is
bounded from below as follows

IAI

1
[/IV%I _ED(%’(/)’) 2 |Allc, (73)
i=1

and that the tern%D(Xp(A) — pa, Xr(a) — Pa) IS non-negative. Therefore proving the
bound from below amounts to proving that

1 1
=Up — ED(XF(A)’ xray) = —ClA]|,

_/fAIOA+2
R3

where, here and below; denotes a positive constant that is independent.obn the
one hand, we have already proved in [11] that

|Ux — D(xr(n), xra))| < CIA.

On the other hand, in view of the upper bound (68)/¢h it is straightforward to see
that

[A]

1

UIV%I —ED(%»% } —/prAéCIAI, (74)
R3

We next show, Wlthout difficulty, that for all > 0, there exists a posmve constéatit)
independent ofz such thatf, = f\" + £ with ||f(1)||Loc <k(e) and|| f12 )52 <e.
unif

Then, using Hdlder's and Sobolevs inequality, we check that

‘/fAIOA
R3

[A]

<k<s)|A|+eZ/|w, . (75)
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At this stage, we insert, for every> 0, the bound (75) into (74). It follows that

[A]

IAIZ/| al2<c. (76)

by the same argument as the one used to establish (67), and that

1 A
Al

‘/fAIOA
R3

and consequently, returning to (72), the desired bound from below follows.

D(¢?, ¢?) < C.

Therefore, we have

S CIA]

Thanks to the bounds we have obtained in the course of the proof of the above lemm:
we state (and prove) in the following two lemmas, first a “compactness” result which
is similar to the one we have obtained in the RH setting (in particular, the comments in
Remark 3.2 also apply here), and, next, a further bound on the electronic density.

LEMMA 4.3.— Let p, be the electronic density corresponding to a minimizer
(il ys ..ol 4) of IH . We have

lim / pa=0. (77)

A—00 |A|
INCO

With the help of the bounds (80) and (76), we may establish the

LEMMA 4.4.— Let p, be the electronic density corresponding to a minimizer
(fi ... 0k, o) Of IH. We have

32 _
<C, 78
A / P2 (78)

for some constanf that is independent of.

Proof of Lemmas 4.3 and 4.4 Let us argue first in the smeared nuclei case. We recall
from [49] and [11] that, for any functioh, in H1(R®),

< CD(mp — pa,ma — pa) P21 VAl 2R3, (79)

’/(mA —pa)ha
R3

(this is easy to check using Fourier transforms), where here and B&loenotes a
positive constant that is independent/of
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Let us begin with the proof of Lemma 4.3. In view of the expression (70) along with
the bound from below (73) and the bound from above for the energy (68), we deduce
that the density of a minimizer satisfies

mD(mA—,OA,mA—,OA)ﬁc- (80)
Next, it only remains to apply (79) with a special choice fqQr; namely, i, is such
that 0< hp <1, ha=1o0nT(A), hpy =0on{x e "'(A); d(x;dI'(A)) > 1}, and
Jra VA2 =0(]A) (see the details in Chapter 3 of [11]).

In order to prove Lemma 4.4, we remark that (76) implies in particular

[1vyaF <cial (81)
R3

Then, we may apply the inequality (79) withy, = ./pA, and we deduce from (80)
and (81) that

‘/(mA — pa)/PA| < CIAL
R3

The Cauchy-Schwarz inequality now gives

‘/mA\/,OA < ”mA||L2(R3)||\//0AHL2(R3) < CIAL
R3

The same argument carries through to the case of point nuclei, replagingy xra,
everywhere above, since the various bounds obtained in the course of the proof c
Lemma 4.2 yield in particulaD (xr) — pa, Xra) — pa) < CIAl. O

4.2. A striking example

In view of the estimates of the previous section, it seems reasonable to believe that th
Hartree energy per unit volume admits a thermodynamic limit (though it is not explicitly
proven). The natural question is then to determine even formally such a limit. We go
back to the expression for the Hartree energy given in (64), that is

[A]
Efr . iom) =Y (/wm ——D(|<p,| o) ) /vAp+ D(p, p),
i=1

that can be rewritten in the usual way

[A]

E”(wl,...,wM)—Z/WA—/VAp+— S D(g le ).

1<i#j<IAl
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It is then tempting to argue as follows: in view of the large numjer of functions
asymptotically involved, there should not be a large difference between the above energ
and the restricted Hartree energy given in (45). In other words, since the number o
“diagonal” termgi = j], namely|A|, is small compared to the numbets. (> — |A|) of

the “off-diagonal” termdi # j], one could be tempted to replace the sMif.; ;<

by the sum3_;; ;<a;» and obtain the same problem in the thermodynamic limit,
both for the Hartree and the restricted Hartree problem. As a consequence, the Hartre
model should degenerate in the thermodynamic limit, to a periodic problem of density
functional type. As we shall see, this guess is wrong. We shall provide two arguments ir
the favor of this claim. We shall first prove, for a very special case detailed just below,
that the thermodynamic limit of the energy per unit volume converges to the periodic
Hartree model we have set before. Secondly, we prove in Section 4.4 below that thi
upper limit of the energy per unit volume in the general Hartree setting may be boundec
from above by the periodic Hartree model, provided the unit cell of the crystal is a cube,
and provided there exists a minimizer of the Hartree periodic model which shares the
symmetries of the unit cube. In both cases, the limit of the energy per unit volume is
clearly strictly smaller than the corresponding periodic energy in the restricted Hartree
setting, as shown in Section 4.4 below.

To convince the reader that the diagonal terms do play a role even in the limit, we
consider the Hartree model for smeared out nuclei, and we moreover choose a ver
particular form of nuclei. Let us denote ¢ a positive minimizer of the Choquard
problem introduced in (65) (there are many minimizers, all equal from one another up tc
a translation, we just pick out one of them). We chopéeas a shape of the nuclei. For
each finite set\, the measure:, defining the density of nuclei is therefore

ma=Y_ @a(-—k). (82)
keA

The Hartree energy (70) then reads

[A]
m 1
ERVT (.. o) = E [/lV(pilz— ED(QZJ?,(P?)
i—1
R3

1 1 2 2
+ ED(mA — PA, A — Pp) — §|A|D(¢’Cv‘/’c)'

It is straightforward to see on the above expression that(amy...; ¢;4)) such that
{i; 1 <i < |Al} = {pc(- — k); k € A} defines a minimizer of this Hartree problem.
Indeed, by definition of the Choquard minimurp we have, for all arbitrary functiop

1 1
/|v¢|2 — 5D ) / Vgel? = 5D (92, 92)
R3 R3

with equality if and only ifp = (- + y), for somey in R®, and on the other hand

1
ED(mA —pa,mp —pp) =0,
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with equality whemm, = py = iea <p,f, which happens precisely whép,; 1 < k <

A} ={pc(- —k); k € A}.
As a consequence, we have in this setting

1, 1
— Iy =Ic — D (92, ¢2),

[A| 2
and, also,
m,H 1 1 1
lim —inf Vo|? — ZD(¢? ¢?) + =Dg(m — —p)—=D :
Am Al {[I @l 3 (<p,<p)+2 g(m—p,m—p) 3 (m, m);

¢ € H'(R? /<p =1, p—Z|¢|(+k)}

kez3
We have therefore proven

PrROPOSITION 4.1. — In the special case when the shape of the nuclei is given by the
Choquard minimizep¢ through(82), the energy per unit volume for the Hartree model
converges in the thermodynamic limit to the infimum of the associated periodic problen
(36)—(37)—(32) up to the usual additive constamt/2.

In addition, the Hartree minimizer, which in this special case(dgs (- — k))iea
converges tdoc (- — k))iez3, Wherepe minimizeq36)—(37)—(32)

The above setting has therefore allowed us to figure one possible thermodynamic limi
for the generic Hartree model. We are now going to study this periodic problem.

4.3. Well-posedness of the Hartree periodic problem

In view of the above example, we believe that we are founded to consider the periodic
Hartree problem introduced in (30)—(31) and that we recall here for convenience

1G = mf{E;ir(w); ¢ € H'(R®), /|<o|2 = 1},
RS

1
EL(¢) = /|w| = 5Dl 191 = [ Go+5Dc (. p). (83)
with
p(x) =" 1pl*(x +k). (84)
kez3

Note that (83) may equivalently be written as

,(w)—/wwz D(gl2 1¢1?) /Gw -3 //w (NG (x — y)p?(y) d dy.

R3xR3
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The analogous problem for smeared nuclei is given by
I = i”f{EE"e’rH(w); ¢ € H'(R%), /I<p|2 = 1}, (85)
R3

where the periodic energy;. is defined as follows

1
E&ﬁwﬁi/W¢F—500m%wﬂ
RS

1 1
+5D6(o—m, p—m)—2Dg(m,m). (86)

We have the following result announced in Section 2

THEOREM 2.2 (Well-posedness of the H periodic problem).The minimization
problem defined b{B0)—(31) (espectively by36)—(37))admits a minimum. In addition,
any minimizing sequence (80)—(31) (espectively(36)—(37))is relatively compact in
H(R®), up to a translation.

The rest of this paragraph is devoted to the proof of this theorem. For the sake o
clarity, we only do the proof in the smeared nuclei case. A straightforward adaptation of
the following arguments allows one to conclude in the case of point nuclei.

Proof of Theorem 2.2-Let us first make the following observation. Since the
gquadratic formf +— Dg(f, f) is non-negative, we may use, once more the comparison
from below by the Choquard energy, and we obtain without difficultylg'@’f > —00.

Step 1. Compactness of the periodic density.

Let ¢, be a minimizing sequence of (85)—(86). It is clear that the Choquard energy

1
L/W%F—EDOwFJ%F) (87)
R3

of ¢, is bounded, and therefore, by using (67), thatis bounded in H'(R3).
Consequentlyp, = 3,73 ¢2(- — k) satisfies

/P, is bounded i (Q). (88)
for
[on=[et=1 (89)
0 R3
and by convexity
/IVﬁn\2</IV¢n|2. (90)
0 R3

It follows that (extracting a subsequence if necessgyy) converges weakly in
leer(Q), strongly inL?(Q), 2 < p < 6 (by the Rellich—-Kondrakov theorem), and thus
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almost everywhere oR?, to some,/p satisfying

/p:L (91)
0
and
Nim D (pn —m, pn —m) = Dg(p —m, p—m). (92)

The “only” question that remains to settle is the behavioug,pitself in order to pass
to the (lower) limit in the Choquard energy (87). (Note that the weak convergence of
¢, in H1(R3) is not sufficient to conclude.) Another point is worth to be noticed at this
stage. Sincen and G are periodic, we obviously check that, for ahyn Z3 and¢ in
HYR?), Epsf (9(- + k) = Ejs! (), and thatp(- + k) and ¢ yield the same density
o through (84). Therefore, the minimization problem under consideration has some
translation invariance, and the meaningful notion of convergence for the minimizing
sequences is the convergence up to some translation. For these reasons, we shall adoy
the following the concentration-compactness approach (and its terminology), for which
we refer the reader to [34] and the Appendix of [35].

Step 2: Vanishing does not occur.

We argue by contradiction, and begin by assuming that the sequgnemishes, that
is to say, for allR > 0,

lim sup [ ¢>=0. (93)

n—>+oox€R3
x+Bpr

A standard consequence of (93) (see [34]) is thatonverges to 0 ir.?(R®) for all
2 < p < 6. Hence,

li)rpoo D(¢?, ¢%) =0. (94)
On the other hand, by the convexity argument used in (90), we have

?, (95)

imint [ Ve, > lminf [ 197,17 [ 197
R3 0 0
where we recall thap is the limit of p,. It follows from (94) and (95) that

1 o 1 1
I,;’,;,H + éDc(m, m) = un_llrgj {/ |V, |2 — 5D(<pf, <pf) + EDG(,on —m, p, —m)
R3

1
>/|Vﬁ|2+§DG(p—m,p—m). (96)
o

Therefore, contradicting the vanishing assumption amounts to exhibiting gome
H'(R®) such that the following two properties are satisfied

Y -k =p (97)

kez3
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and

1
[ 1962 =202 6%) < [ 193] (98)
R3 0
Indeed, assume for a moment that we have at our disposal g@atsfying (97)—(98).
We then have

4 Ip (
G(m,m)

per 2
. 1
<int{ [ 1992 = 30002 9% v e HHRY). 30 wAc 0 =p}
R3 kez3
1
+§DG(/0_m»,0_m)
2 1 2 2 1
< [ 19912 = 5D(% %) + 5Do(p —m.p—m)
R3
2 1
< [1933F +3Datp —m.p—m),
o

This contradicts (96).
In order to construct a conveniept let us first of all consider a partition of unity. We
fix somew; € D(R?), w1 > 0, /o, € WL (R3), and

Y oi(-—k) =1

kez3

(Such a function exists; indeed, for apye D(R®), with ¢ > 0 and [ =1,¢* xo
provides an example.) We next scale this functigrby defining, for alln € N,

1 .
w, = ECO]_ ; .
The functionw, yields again a partition of unity

o —k)=1 (99)

kez3

Indeed, it suffices to remark that the function in the left-hand side of (99) is periodic and
to show by a simple calculation, that we leave to the reader, that its Fourier transform a
the points ofZ3 is everywhere zero except at 0 where its takes the value one.

Next, we consider the sequence of functiahs= ,/p+/w,. It is easily checked that
Y, € HY(R®) when /p € leer(Q). By construction,

SN2 —k=p0) > w0, —k)=p(),

kez3 kez3
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and we shall prove that, far large enough,
/|wn| D) /IVII

We claim that

dx dy

D2 v?) / / p(nx)pny)wi(x)wi(y)

x J—
s lx — yl

L e+ 0(1). (100)
n n

In order to prove this claim, let us remark first that, by the Riemann-Lebesgue theorem
the sequence of functions(n -) converges weakly i, for every 1< p < 3, to the
constant function of valug, o = 1 asn goes to infinity.

Denoting for a whileo” (x) = p(nx), we remark next that

// p(nx)p(ny)wi(x)wi(y) dxdy=/<10 wl*i)p”wl.
R3

x_
S =] x|

It is easy to see thatp"w1) * 1 is bounded inHZ2,(R3) since p"w; is bounded in

L?(R3). Therefore it strongly convergeslrﬁ)c(R3) t0 w1 * iy ‘,and thug((p” wl)*\x\)wl

converges inL?(R3) to (w1 » |x|)“’1 As p" converges weakly locally id.? to 1, we
obtain (100).
We now estimate

[1vni= [1valo.+2 [ Vova,9o-9a,+ [ [vva, s
R3 R3 R3 R3

1 1
:/|V\/ﬁ|2+5/v,o(nx)-Va)l(x)dx—l—E/W«/al(x)‘zp(nx)dx.
0 R3 R3

To treat the last term, we remark that

1 1
= [Ivewfpand< S [ v oo dr
R3

Supfe)

1
<SIvali. [ pexd
Supfw1)

1 2 1
<Vl [r=0(3).

0
For the second term, we compute by Green'’s formula

/V,o(nx) -Voi(x)dx = — /,o(nx)Aa)l(x) dx
R3

R3
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and the right-hand side goes to O@agoes to infinity, forp (nx) converges to 1i®’'(R3),
and [zs Aw1 = 0. Therefore, we have

1 1
2 /V,o(nx) -Voi(x)dx = 0(;).
R3

Collecting these informations, we deduce
2 2 1
[1962= [ 197 +o(;>. (101)
R3 0
From (101) together with (100), we obtain

/|vwn| D2 YY) /|Vﬂ ——D(wl,w1>+o(1)

Therefore, fom large enough, we obtain a convenient funcigom (97)—(98) by setting
¢ = ¥,. We have thus reached a contradiction, and it follows that vanishing does not
occur. The next step consists of ruling out dichotomy. As we shall see, this is somewha
more intricate than ruling out vanishing.

Step 3: Dichotomy does not occur.

Let us come back to the minimizing sequenggof our problem. Since (93) does
not occur, there exist a subsequenceppfstill denoted byg,), Ry > 0, g9 > 0, and a
sequence of points, in R3, such that

/w (- + yn) 2 €o. (102)

By setting y, = [y,] + k,, with [y,] in Q andk, in Z3, and @, = ¢, (- + k,), we
obtain another minimizing sequengg of Igng, which yields the same limit densiy.
Moreover, sincéy, | is bounded, we infer from (102) that the weak limit@fin L?(R3)
is not identically zero. In all that follows, we shall work with the new sequefcéstill
denoted byy, for simplicity). Without loss of generality, we may assume tpat> 0.
Moreover, with the help of Ekeland’s principle [16], given a minimizing sequehce
we may construct a new minimizing sequenrgesuch that

I < Epst(p0) < Epsl (). (103)
and that
”@n — @n ||L2(R3) — O, asn — o0. (104)

In particular, it is easily seen that the densities corresponding, tand ¢,, namely
On =Y kezs ®2(-—k) andp, = 3" .z3s $2(- —k), converge to the same limit Moreover,
@, satisfies
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1
—Agp, — ((pn P |> @n + (G %o (P —m)) @y + €200 — 0, (105)

in L2(R3) (at least), as: goes to infinity, for some real numbey,. We recall that,
in (105), m denotes the measure defining the smeared nucleus in the un@ caftd
we have denoted

G % (on — m) = /G(x — 9 (on(y) —m()) dy
0

In addition, ¢, is a sequence of “almost” Lagrange multipliers. Using the facts that
all minimizing sequences of”./ are bounded inH*(R®), we then easily deduce,
from (104) and Sobolev and Hdélder’s inequalities, that

Ion — Onllrre) — 0, asn— oo, (106)

for every 2< p < 6, and we also check from (105) thgtis bounded. Moreover, we may
assume thap, converges ta; > 0, weakly in H1(R?), strongly inL{}.(R®), for every

1< p < 6, and almost everywhere d®°. Moreover, because of (102Jgs ¢7 > 0. Of
course, if [zs 92 = 1, the proof is over. Indeed, (106) then yields the strong convergence
of g, and¢;)n to ¢y in LP(R3), for every 2< p < 6. In particular,p = 3, .73 93(- — k),

and ¢? * o] converges tap? « |71| for the strong convergence in?(R3), for every

3 < g < +0o0. Hence,
lim D(¢7, ¢7) = D(¢3, ¢3). (107)

n——+00

Using (92), we thus prove without difficulty that
1™ = limsupE™H (¢,)

er er
P n——+00 P

I|m |nf E™H (3,

per

>1lim |nf E™H (p,)

i, per

E;r)nerH((pl)

el

Therefore, all above inequalities are equalities. In particglars a minimizer oflggr”.
Moreover, we deduce from (107) and (92) that

lim /|V¢n|2= lim /|V<pn|2=/|w1|2,
n——+00 n—400
R3 R3 R3

and, thusg, andg, both converge t@, for the strong convergence fi'(R3) (at least).
We now assume by contradiction thft: ¢? < 1, and setp,, = ¢, — ¢1. We shall
analyze the behaviour of the sequepgg, following the scheme of proof which is given
in the Appendix of Lions [35]. Since., is bounded inH*(R%), we may reproduce
with ¢, the same argument as the one we just made,or\We leave apart for the

VoWV
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moment the case whep,, vanishes in the sense of Step 2 (this case will be ruled
out in Step 4 below), and concentrate first on the most difficult case when a ‘standard
dichotomy arises. That is to say, we assume that there exists a sequence ofypoints
in R3, with |y,| — +oo, such thatp, ,(- + y,) converges tap, > 0, ¢, # 0, weakly

in HY(R®), strongly inL{.(R®), for every 1< p < 6, and almost everywhere drP.
When dichotomy occurs, we see, by reproducing several times the above argument, th
the sequence, splits into many pieces, each piece going far away from all the others.
Assuming that, at each step, the case of vanishing is left apart for a while, we infer the
existence of functiong, € H(R®), ¢, > 0, such that

K

00— > (- +y") =0, (108)
k=1

strongly in L2(R3), asn goes to infinity, and for some sequences of powjfs € R3
such thaty” — y\"| — 400, if k # [. Let us observe that in (108) aboves2k < 400
(whenK =1, ¢, is compact up to a translation). Our first step will consist in showing
that K is finite; that is to say, dichotomy may involve only finitely many pieces going
far away from each over. Indeed, otherwise, by settipg- [ ¢? > 0, we must havey,
going to 0, ask goes to infinity, sincé_, -, o = 1, due to (108). Therefore, passing to
the limitin (105) as: goes to infinity, it is not difficult to check that thg's are infinitely
many (non-negative) solutions, in the sense of distributions at least, to

1
— A — (wf * m)‘pk + Wor +egp =0, (109)

such thatp; goes to 0 inL?(R?), ask goes to infinity, where we have denoted
W =G %o (p—m), (110)

and wheres is the limit of the “almost Lagrange multipliers?, appearing in (105).
The two main points in (109) are that (a) the Lagrange multipligs the same in

all the equations, which is a standard fact in the concentration-compactness approac
(b) the periodic potentialV is also the same, which is a consequence of the fact that the
sequence of densitigs is known to be compact from Step 1. Itis to be noticed that the
argument which is used in the Appendix of [35] to prove tKats finite, within some
specific examples, is not valid in our case, f@ris periodic (in particular, it does not
decay to O at infinity). Nevertheless, we may argue in the following way. Using (67) and
the fact thatW is in Lﬁ{ff(R3), it is a standard exercise to deduce from (109) (that we
apply tog,, and then integrate oveé®®), that ¢, is bounded inH*(R?®). Therefore ¢,
converges to 0 strongly ih?(R3), for every 2< p < 6, almost everywhere oR3, and
weakly in HX(R?). In fact, going back to (109), we even deduce the strong convergence
of ¢ to 0 in HY(R®). We now claim that the sequenegin H1(R?), which is defined

by v = @i/l @kl L2(r3), Satisfies|vi |l 2rs) = 1, together with

—Avy + W +ev,— 0, in LZ(R3).
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This is simply a consequence of the convergengg, &b O, and of the well-known bound

1
T

] < 2/l oill 2R3 IV @il 2R3

L>®(R3)

(which is, for example, deduced from Cauchy—Schwarz and Hardy’s inequalities). Thes

properties ol imply that—e is in the spectrum of A + W (see, for example, [43]). We

then reach a contradiction, since we shall prove laterthais actually strictly below

the infimum of the spectrum 6f A + W (see the comment following (126) below).
Having proved that dichotomy yields a finite number of “pieces”, we may argue now,

without loss of generality, as if there were ohlyo piecesg;, andy; ,, which is compact

up to the translation along the vectors In other words, we have

@n — @1 — @2(- — yu) > O, (111)

strongly inL?(R3), for every 2< p < 6, and weakly inH(R3).
For reasons which will become clear in a moment, we define now the following family
of minimization problems, indexed by a density> 0, such that/ € lee,(Q)

1
Iﬁzinf{/|V<p|2—ED(<p2,<p2);<peHl(Rs), Z(pz(x—l—k):,a(x)}. (112)
R3 kez3

The fact that the minimizing sequengg of the periodic Hartree problem (36) we
consider has split into two pieces and ¢, (with the convergence (111)) while the

density p, = > 423 92(- + k) converges to the periodic densityof unit mass clearly
implies that

Ip > IPl + Ipz»
113
{ p = p1+ p2, (113)
where we have denoted
pi=Y QA-+k, i=12 (114)
kez3

In addition, we necessarily have

1 .
= [ Ve~ 5D(g2 ). i=12 (115)
R3

for we always have
1, <1y + 1, (116)

Indeed, lets > 0 be fixed, then there exist some functiofis i = 1, 2, in D(R%), such
that 3"y 73 Y2(- + k) = p;, and

[Vl = 3R R <1 +e. (117)
R3
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Then, choosing in Z3, such thaty, andy»(- + n) have disjoint supports, and defining
Vn = Y1+ ¥2(- +n), it is easily seen that ;s ¥2(- + k) = p1 + p2 = p, and that

1
1< [ 194 = 5D (2 v2)
R3

1
<Y | [1vwit - 5002 )| o

i=121055
<1y +1,+2c+0(1),

where @1) goes to 0 whem goes to infinity. Therefore, the inequality in (113) turns to
be an inequality, which gives (115). We deduce (116), by letiigg to infinity, and then

¢ go to 0 in the above string of inequalities. In order to reach a contradiction with (113)
(and therefore conclude that dichotomy does not occur), we shall now prove the convers
inequality, namely

I, <1, +1,. (118)

Note that these strict inequalities (118) involve variational problems with pointwise
constraints, which is non-standard in the concentration-compactness method.
To proceed further, we need to obtain more information on the functgrand ..
In particular, we prove now that these functions have an exponential decay at infinity
Passing to the limit locally in (105), we thus obtain the system of equations
—A@1 — (@ * 5)¢1+ Wor + 691 =0, 119)
— Ay — (¢ * ﬁ)‘ﬂz + Weo+ep2=0,

with the periodic potentia being defined by (110).
First of all, asg; > 0 and ¢; # 0, it follows from (119) and from the Harnack
inequality thatp; > 0. Next, we claim that

e>0. (120)

For this purpose, we remark thj o = 1, and therefore that

[w=o
0

A straightforward consequence of this observation is that the first eigenvalue of the
operator—A 4+ W on the unit cellQ, with periodic boundary conditions, denoted by
r1(—A + W, pern), is necessarily negative

A(—A 4+ W, pern < 0. (121)

Indeed, it suffices to test the hamiltoniam 4+ W on the constant function=, which
yields A1(—A + W, per) < 0, and to remark that this constant function cannot be the
first eigenfunction of-A 4+ W unlessW = 0. This latter case may happen, but it is even
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simpler to conclude that > 0 then. IndeedV = 0 meansp = m. The functiong; is
then a positive solution to

1

A Z e (‘Pf* m)‘ﬂl +ep1=0.

If ¢ <0, we then obtairki(—A — <pf * |71| ) > 0 on all bounded domaife, and this
cannot be true (use a rescaled functignix) = o%?u(ox) with ¢ small enough). We
shall therefore assume thiat = 0 in the sequel, which implies (121).

We shall denote henceforth lpye, the first periodic eigenfunction 6fA + W on Q.

From (121), we deduce that for any culig = [0, R]® with R large enough, the
first eigenvalue of the operaterA + W on K with homogeneous Dirichlet boundary
conditions, denoted by;(—A + W, Kg), is negative. Indeed, it suffices to take as a test
function y/||v || .2 wherey is built as follows:y is equal togper on [1, R — 1]3, and
we glue to it a smooth function in order to satisfy the homogeneous Dirichlet boundary
conditions ord K z. Obviously,

[ 19914 Wy = (R = 2%a(-2 + W. pen + O(R?),

Kr
from where we deduce, fat large enough,
M(—A+W,Kg) <0,

and, therefore fortiori,

1
kl(—A — (<p§ * ﬁ) + W, KR> <0. (122)
X
Let us now contradict (120) and assume that 0. We then have

{ —Ap1— (¢ * &) g1+ Wor = —e9 >0,
¢1> 0.

A standard argument, recalled in [11], shows that this implies that for all bounded
domain 2, the first eigenvalue of the operator appearing in the left-hand side with
homogeneous Dirichlet boundary conditions is non-negative:

1
Al(—A— <¢§*m) + W, sz) >0. (123)

Of course, we reach a contradiction with (122), and therefore we have proven oul
claim (120).
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Let us now see what this latter information implies on the behaviour at infini of
(the same holding true of course fos respectively). We are in the following situation:

— A1 — (pF* |71|)<P1 + We1+ep1=0,
01> 0, (124)
W is Q-periodic [, W=0, &>0.

We claim that (124) implies that
@1 (respectivelyp,) has an exponential decay at infinity. (125)

This is probably a well-known fact. For the sake of consistency, we provide now one
possible proof of this claim.
We begin with proving that (124) implies

AM(—A+ W +¢, pern > 0. (126)

Let us make some comment on this inequality. (126) implies-tlads strictly below the
essential spectrum of the linearized operatadx + W, since, as we are going to check,
r(—A + W, pern) is precisely the bottom of the essential spectrum-of + W. Indeed,

on the one hand;-A + W being a self-adjoint Schrédinger operators with a periodic
potential, its spectrum consists only of essential spectrum.aidA + W, per) belongs

to the spectrum (see [43,15,52]). On the other hand, sinds in L] (R®), for some

p > 3/2, it follows, from the Rayleigh—Ritz principle and Harnack’s inequality, that
the first eigenfunction of A + W with periodic boundary conditions of is positive.
Therefore,,1(—A + W, per) is below the bottom of the spectrum efA + W on R3
(see [46]). Let us turn now to the proof of (126).

Itis easy to prove that; (— A+ W + ¢, per) cannot be strictly negative. Indeed, should
it be the case, we would just argue as we did before, building with the first eigenfunction
of —A + W +¢ (which is of course the functiog,e, introduced above) a convenient test
function in order to prove that we then have necessavilty-A + W + ¢, Kg) < 0 for
some large enough culd&;. Now, because of (124), we must have in particular (arguing
as we did to prove (123)),

MEEA+W+e,2)>0

for any bounded domaif2, and we therefore reach a contradiction.

In order to prove (126), it still remains to show thal{—A + W + ¢, per) cannot be 0
either. For this purpose, we have to be a little more carefah(f A + W + ¢, per) =0,
we have

(_A + W + 8)(pper = O.

We consider the functiom gz gper, Whereyy is a cut-off function built as follows

1 X
Xr(x) = Wm E s
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with x; a given smooth cut-off function, spherically symmetric, that vanishes outside the
unit ball, and that is normalized bfyx? = 1. A simple computation shows that

2
/|V(XR‘Pper)| :/‘Pger|VXR|2_/XlzeA‘Pperﬁoper-
It follows that

1
/ ‘V(XR‘Pper)|2 - (‘Pf * m) (XR(Pper)2 + (W + 5)(XR‘Pper)2

=/X[ze(_A(pper+(W+5)‘pper)§0per— D (9. Xz 0per) +/<p§erIVXR|2

= _D((pilz.’ Xlzegopz)er) + /¢Ser|vXR|2- (127)

We remark that

1
[ Bl < lgperts | |vXR|2:o(ﬁ>,

and that

D(92. XgPher) = (inf gpen® D (9F, x7) = (inf (/’per)z% /wf
Br
(the last inequality being true because of Newton'’s theorem). Inserting both informations
into (127), we obtain that foR large enough, the left-hand side of (127) is negative, and
therefore
, 1
kl(—A—(pl*m—l-W—l-e,BR) <0
which contradicts the fact that;(—A — ¢? x ﬁ + W +¢,Q) >0, for any bounded
domain€2. Hence, (126) is proven.
As (126) holds, we may choose somrie- 0, ¢’ < ¢, such that

A(—A+ W +¢',pen > 0. (128)

In addition, it is clear, using the fact thaf » ﬁ goes to zero at infinity, that for sonie
large enough, (124) implies

—Ap1+We1+€¢1 <0, on By,
¢1>0,

W is Q-periodic [, W =0, ¢ >0,
A(—A+ W +¢', per > 0.

(129)

We are going to see that this implies the exponential decay at infinity. Let us first
of all fix somed €10, 1[ close enough to 1, and somee 10, ¢'[ close enough te’, such
that

1
A1<—A + 5(W + W), per) > 0.



I. CATTO ET AL./Ann. I. H. Poincaré — AN 19 (2002) 143-190 179

This is of course possible because of (128). We then introduce the correspondin
periodic eigenfunctionyper which satisfies

—AYper+ 2(W + W) Pper >0 0NRE,
Yper>0. (130)
Yper is Q-periodic [, Kl’éerz 1,

andyper € L>(R®). On the other hand, we set= (¢/ — u)/(1 — 6) and we define the
function

e—\/&m

Y1(x) =
x|

It satisfies, for any radiug > 0, and thus in particular for the appearing in (129),

{—Aw1+aw1>o, on B, (131)

W1>0.

We are now going to show that the function
V=91 e
is a supersolution to the equation in (129), i.e.
—AYy + Wy +¢&y >0 onBg.
Indeed, the point is to remark that by convexity

N v v
—AY =—AWIyED) > —(1—0) Ay — 06— Avger.
K[’ (‘//1 wper ) ( )w']_ ‘//1 w_per K[’p

Therefore,

—(1—-0)AY1 + &'y — puyr]

14
K[’per
>0,

in view of (131) and (130). The functio is therefore a supersolution.

Because of (128), we know that fortiori the first eigenvalue of the operator
— A+ W + ¢’ on any bounded domain with homogeneous Dirichlet boundary conditions
is also strictly positive. Therefore, this operator satisfies the maximum principle on any
bounded domain. We now choose a large enough constanth thaty; < Cy ond Bp.
By a standard argument that we leave to the reader, we aptainC+r on B¢, and, as
Y has an exponential decay, this yields the expected behavigyraifinfinity.

As usual in the concentration compactness approach, the information that we nov
have at our disposal on the exponential decay,olvill now be used to evaluate in a
precise way the behaviour of the energy.

—A¢+W¢+s/w>£[
Y1

+

[_QAWDET + WWper + l“ﬂper]
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For this purpose, we consider the following sequence

p(x)
S reza(@r(x + k) + @o(x + k + ne))?

Pn(x) = (91(x) + @2(x + ne)), (132)

wheree denotes the unitary vectot, 0, 0) € R®.
The functiong, has been designed in such a way that

> @ +k) =p. (133)
kez3
In addition, because of the exponential decayplndg, at infinity, we have, for some
§>0,

S (@rx + k) +@ax +k+ne))’ = p1+ p2+0(€) = p+O(e™),  (134)
kez3

uniformly onR3. Let us now evaluate the energy@f. Because of (133), we must have
forall n

1
4)<l/|V¢nF——él>@ﬁ,w3» (135)
R3

On the other hand, using (134) and again the exponential decayawfd ¢, at infinity,
we may compute

_ 1 1 1
/|V<pn|2—§D(<p,f,<p,f)=/IV<p1|2—§D(<pf,<pf)+/Iszlz—ED(cpS,w%)
R3 R3 R3

— D(¢2, 93(- +ne)) +O(e™).

Therefore, in view of (115), we have

_ 1. 5 —sn
[ 1V6, = 5D 5D = 1+ 1y = DIGE. 63+ ne)) +O(e™)
R3

1 1
=ht = 6 [e3+o(3). (136)

which, forn large enough and along with (135), establishes (118) and contradicts (113)

Step 4: Conclusion.

In the preceding step, we have assumed for clarity that the dichotomy involves two
pieces that are compact (the second one up to a translation). A case that we have
purpose omitted is the case when one part of the original sequence is compact, whil

the other one, vanishes. In that cagg= 0 in the preceding proof and therefore (136)

does not allow to conclude. One thus has to use another strategy. What we are goir
to show is that the work we have made in Step 2 to exclude the case of vanishing

allows to conclude also in that case. Assume that the original minimizing sequgnce
splits into ¢; > O (the one that is defined at the beginning of Step 3) @ngd such
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that the support of,, goes to infinity (in the sense made precise by the dichotomy
assertion), and that moreover vanishes in the sense of Step 2. That is, for any sequen
(yn) Of R3, @2,(- + ya) = (¢u — 1) (- + ya) CONverges to 0 weakly it/ *(R?), and,
actually, ¢, converges to O strongly ii.”(R?), for every 2< p < 6 (see [34]).

Let p2,, =D ezs <p§’n(- + k). Then, p,,, is non-negative,Q-periodic, and, since the
sequence/p2, is bounded ianler(Q), it converges (maybe up to the extraction of

a subsequence) tg'p,, with p> non-negative and-periodic, weakly ianle,(Q), and
strongly in L{ (R®), for every 1< p < 3, thanks to Rellich’s theorem. We now check
that, necessarilyp, = p — >,z 92(- + k) (and therefore the entire sequengg,
converges, not only a subsequence). Indeed, by observing that

Pon=pn— Y 92+ =2 01 +k)gan(- + k),
kez3 kez3

we get

3 /<P1(x+k)|<ﬁ2n(x+k)|dx /¢1<x)|<p2n<x)|dx
kEZSQ

We then easily conclude that, ;s ¢1(- + k) g2.,(- + k) converges to 0 inLi (R?),
using for example the two facts thas,, converges to 0 i.*(R®) and thaip; lies in the
corresponding dual space, thati%3(R3). Therefore, we deduce, by convexity, that

I|m|nf/|V<pn| _/|V<p1| +I|m|nf/|V<p2n|

R3
>/|V<p1|2+|’;@+irg/\v\/ﬁzn\
R3 o
2 2
>[IVl + [ V5,
R3 0

Moreover, smcepn converges ta? strongly in L”(R®), for every 1< p < 3, 2 *
converges t@? * T strongly inL7(R?), for every 3< g < +o0. Hence, we have

IXI

1 1 2 2
ngrpoo—il?(wn, e —5D(e1. ¢1)-

It follows that
per | ‘Pl' + | \/52| 2 (§01, 901)
R3 0]

1 1
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In order to reach a contradiction, it therefore suffices to exhibit speeD(R3), ¢, > 0,
that satisfie$", ;s 95(- + k) = p, and

2

1
[ 1vel? =506k o) < [195," (138)
RS 0

and this is proven exactly like in Step 2. Indeed, we now check that

i 1 1
Ipe’,”é/|V¢1|2+/|V<pz|2—§D(<pf,<pf) —ED(wzz, 3)
R3 R3

1 1
+ _DG(IO —m,p _m) - _DG(mvm)v
2 2

in the following way. We seps” = @,(- + ne1), and we considef, = (¢1 + ¢5") llg1 +

05" | 2qe) @S a test function fos/”. Then, Exsf (,) = Epsf (o1 + ¢5") + 0(D), as

n goes to infinity, for(|@, — (¢1 + 3"l y1r3) goes to 0. Moreover, using the fact that
o3 converges to 0 weakly ii71(R?), it is easily proved thap; 3" converges to 0
strongly inL?(R®), for every 1< p < 3. We then check without difficulty, with the help

of arguments detailed before, that

- n 2 n 2
im D((p1+¢5")", (p1+¢5")°) = D(¢2, ¢2) + D (92, ¢32),

n——+00

and that) ", z3(¢p1 + wé"))z(- + k) converges tgo; + p2 = p in LI (R®), for every
1< p < 3. Using (138), we finally obtain

Ho H (-~
Ipg:" <limsupEge (¢,)
n—oo

1 1
=/|V¢1I2+/|V¢zlz—§D(¢f,¢f) —ED(¢§,¢§)
R3 R3

1 1
+5Dclp—m, p—m)—5Dglm,m)

, 1
</|V¢1|2+/|Vﬁzl —ED(wf,wf)
R3 0

1 1
+§DG(IO_m?p_m)_§DG(m?m)?

and this yields the desired contradiction with (137).

Since both cases of vanishing and dichotomy have been ruled out, we thus are i
the case when the sequenggis compact inL?(R3). This concludes the proof of the
theorem. O

The purpose of the following subsection is to compare from above the upper limit of
the energy per unit volume in the Hartree setting by the periodic Hartree model, unde
symmetries assumptions which are made precise in Proposition 2.1.
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4.4. Upper limit of the energy per unit volume

This section is devoted to the proof of the following proposition which was announced
in Section 2, and which is recalled here for convenience.

PrROPOSITION 2.1. — We assume that the Van Hove sequencesatisfies(41). We
assume here that the unit céllis a cube and that there exists a minimizgg, € H*(R3)

of 1%, which shares the symmetries of the unit cube. Then,
H
M
limsup—2 <17 + —, 139
A—>oop|A| er+ 2 ( )

wherel;., is defined by30)—(31)

Remark4.1. —

(1) The same result holds in the case of smeared nuclei, if we assume moreowxer that
shares the symmetries of the cudeand defineM according to (40). However, we shall
provide a proof only in the case of point nuclei, the case of smeared nuclei being evel
easier to deal with.

(2) In the H setting, since we do not know whether the minimizing unique (up to
a translation), we are not able poovethat¢ shares the symmetries of the cube; this is
the reason why this is an assumption in the statement of the above proposition. Howeve
this assumption is very natural from the physical point of view.

An easy by-product of the above result is the following. The argument which rules
out the vanishing case in the proof of the existence of a minimizerrfgp;c by the
concentration-compactness method, yields in particular that, gigeperiodic function
p > 0such that/p € HL (R and [, p =1, we may find a functiog € HY(R®), with
S kezz 92 — k) = p (and, thus/gs 9? = 1), such that

[ 19or —}Dw ¢?) /|Vﬂ

R3

(see (97) and (98) in Section 4.3). Therefore, applying this result to the densitych
minimizesI*H, we make use of the corresponding functioas a test-function for /.

per? per
to obtain

s M RH R, M
Iljr\n_)sogpm Ip[-ér+ E per((p) + - < Eper(p) + = Iper + E
Thus, while passing to the thermodynamic limit in the energy per unit volume, the
Hartree model does not degenerate to the mm@él which would be the case if the
sum of the self-interaction of the electrons was negligible with respéeet|to
The rest of this section is now devoted to the

Proof of Proposition 2.1-Let us denote bypper a minimizer of the periodic H
problem which shares the symmetries of the unit cube. According to the definitions (19)
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(20) and (21) of the Hartree problem, the| functionsgpe(- — k), for k describingA,
are test-functions for 1{" , and

IH < Ep ({‘Pper(‘ — k) ke A})

1 1
|A| |:/ |V§0per| (goperv goper :| _/VA P + ED(pA? IOA) + EUAa
R3

wherepy, =3 ;ca (pper(- — k). If we compare now with the definitions (30) and (31) of
the periodic Hartree model, we observe that proving (139) amounts to proving that

1 1
lim — /V D , U }
AI—>00|A|{ APA+ 5D (pa ,OA)+2 A
1 M
=- / G,Oper + EDG (,Oper» ,Oper) + E (140)

0

First of all, we write down equivalent expressions for the effective potedtjgl with
the help of the definition op,, in the following way.

1 er(y)?
Dpr(x)=Vp—pax —_Z< Pper(y) dy).

el =k =k

We first make the following observation. Singg., shares the symmetries of the unit
cube, and sincgys <p§er =1, we may show the existence of a positive const@rsuch
that

C

dy‘<'ng’ (141)

1 [ Gy
RATEST

for aimost every: in R3 (see [32] and [11]). Let us emphasize the fact that the symmetry
assumption ompper is crucial for this bound to hold (see more details in [11]). We now
introduce

kez3 3 |x

. 1 _ (Pper(y)2 )
cher(x)—Z(pC_kl —k—y|dy .
R

Because of (141), the series arising in the right-hand side of the definitidn&fis
absolutely convergent oR® and even uniformly convergent on the compact subsets of
R3\ Z3. Moreover, sinceb, is clearly 0-periodic, and satisfies

keZ3

(at least in the sense of distributions), we deduce that, there exists a cehsacih that

@per=G — G *g pper t+ d,
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for G — G ¢ pper is anotherQ-periodic solution to (142). Then, we prove like in [11]
or [32], that
1Al rrs < CIAIYP, foralll< p <3, (143)

where, otherwise specified, denotes here and below various positive constants that are
independent of\,

1
o / 1B, |7 =0, forall 1< p < +oo, (144)
r(a)e
and
1
o / By — Dpe” — 0, forall 1< p < 400, (145)
T'(A)

as A goes to infinity. From the proof of the existence of a minimizerlﬁp, we know
that there exist positive constarfsand . such that

0 < gper(x) < Cexp(—pulx|), a.e.onR®,

and then, the analogous bounds and convergence results are also easily prayed for
that is

loallrws < CIAIYP,  forall 1< p < 400, (146)
1
o / loal? = 0, forall 1< p < oo, (147)
(A€
and
1
o / 1oa — pparl” — 0, forall 1< p < +oo, (148)
I'(A)

asA goes to infinity.
We may now turn to the proof of (140). First, we check that

. 1 1 d
B o At e
R

Indeed, we have

1 1 1
W{" VAPA+2UA}_2|A|Z ( A= —k|>

1
2|A| Z I|m (CDA(x +k)— m)

—lllm () !
_Ex—> ( A(x)_ﬁ>
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and it is shown in [11] thaf, converges tabper uniformly on the compact subsets of
R3. Thus, thanks to the definition dfper, We get

1 1 1. M d
Alinooéym (¢A(x) - ﬁ) = é;lcan ( per(X) — ) = /G Pper + = 5 2,

which gives (149).
Secondly, we establish that

1
lim / Vapa + 5D (s, }
A AT [ aPA+ 5D (pa, )
1 d
= _E Q/ G,Oper+ EDG (pper» ,Oper) - E» (150)

by remarking that

1
Al [ /VA,OA + D(,OAHOA):|

1
=—— [ ] ) 1
2|A|/ APA = 2|A| / apa +0(1)

rA)
= 2|A| / Dperpper +0(1) = __/quer/Oper+ o(1)
I'(A) o
1 d
/Gpper+ DG(pper» ,Oper) +0(1)
o

as A goes to infinity. This string of equalities is straightforwardly verified with the
help of (143), (144), (145), (146), (147), and (148). The proof of (140) (and thus of
Proposition 2.1) follows gathering together (149) and (15Q).

4.5. Somefinal commentson the Hartree type models

Theorem 2.2 deserves some comments, that we list in this paragraph.
First of all, let us notice that Theorem 2.2 provides an existence result of a normalizec
(Jrs ¥* = 1) solution to the associated Euler-Lagrange equation, namely

1
~ap = (P« o+ (G oo (p=m)y +0 =0, (151)

Existence (and bifurcation) results for this type of nonlinear equation (Choquard—Peka
equation) have already been obtained by B. Buffoni, L. Jeanjean, Ch. Stuart et al. [7

8,20-22,50], but as far as we know, the existence mdrnalizedsolution was still an
open question. Theorem 2.2 settles this question.



I. CATTO ET AL./Ann. I. H. Poincaré — AN 19 (2002) 143-190 187

Secondly, it is usual in Solid State Physics to consider Hartree-type equations of th
more general form

—Ap+ F(p)o+ Wo+ep=0,

where F(p)¢ is some local correction to the mean-field potental For example,

in (151),W = G %o (p — m) is the electrostatic periodic potential created by the periodic
lattice of nuclei and by the electronic densitywhile the more usual term (¢? x ‘71‘)(p

takes into account the self-interaction of each electron with itself. Therefore, it seems
to us that the Hartree equation (151) we have obtained is likely to be not so far from
eqguations used by Solid State physicists.

Thirdly, we must confess it may seem surprising that such an apparently eas)
minimization problem, set on the unit cgll with periodic boundary conditions, leads to
such a complicated proof. However, we have not been able (so far) to simplify the above
proof. In some sense, one can find some relationship between our strategy of proof ar
ideas developed by O. Lopes in [37,38,36] for some translation invariant problems of &
similar type.

Finally, let us emphasize again that we do not know of any rigorous proof of the fact
that this periodic minimization problem is indeed obtained in the thermodynamic limit
for anarbitrary Hartree type model. It must be clear to the reader that the only case wher
we are able to conclude (Proposition 4.1) is very particular. Nevertheless, we believe i
has some kind of generality. At least, we hope that the present suggestion for a periodi
Hartree model will stimulate further research.

5. Extensions and per spectives

We list in this last section a few comments on the above results, and indicate som
possible extensions of our work.

So far, we have assumed that the periodic lattice that is covered in the limit by the
sequenceA is Z3, and thus that the periodic cef) is a cube of unit size. The first
basic observation to make is that our whole work goes thrangtatis mutandisf we
replace the cube of unit size by a cube of skzeSlight modifications must be made in
the definition of the potentialy in particular, and we refer the reader to [11] for such
modifications.

Replacing the cube by another shape of unit cell is another story. As we have
mentioned above, Theorems 2.1 and 2.2 still hold. So does Proposition 4.1. On th
contrary, our strategy of proof for Proposition 2.1 depends upon the shape of the cell. |
is an open (but rather technical) question to extend this result to other shapes of cells.

Likewise, we have mentioned above that the assumption (41) is atechnical assumptio
required only for the proof of Proposition 2.1. We recall we believe it can be skipped,
but we do not know how.

Apart from these side issues, the main open problem to tackle iprtizé of the
thermodynamic limit for the energy per unit volume in the Hartree model. As far as this
guestion is concerned, a lot remains to be done.
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Even in some simplified framework, trying to understand Hartree type models for
quasicrystals would also be of interest. Our study [11] and references [1,3,6,45] coul
constitute a starting point.

Let us also mention that the periodic problems we have defined in this work can
be treated numerically, and we indeed intend to treat them numerically. Numerical
experiment might in particular give some insight into the mathematical nature of these
models and help oneself to make up his mind on some of the questions mentioned abov

We finally recall from the introduction that the same issues on the Hartree—Fock mode
(and some of its simplified form) are studied by the authors in [13].
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