@article{AIHPC_2002__19_3_313_0, author = {Almeida, Lu{\'\i}s and Damascelli, Lucio and Ge, Yuxin}, title = {A few symmetry results for nonlinear elliptic {PDE} on noncompact manifolds}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {313--342}, publisher = {Elsevier}, volume = {19}, number = {3}, year = {2002}, mrnumber = {1956953}, zbl = {1029.35096}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2002__19_3_313_0/} }
TY - JOUR AU - Almeida, Luís AU - Damascelli, Lucio AU - Ge, Yuxin TI - A few symmetry results for nonlinear elliptic PDE on noncompact manifolds JO - Annales de l'I.H.P. Analyse non linéaire PY - 2002 SP - 313 EP - 342 VL - 19 IS - 3 PB - Elsevier UR - http://archive.numdam.org/item/AIHPC_2002__19_3_313_0/ LA - en ID - AIHPC_2002__19_3_313_0 ER -
%0 Journal Article %A Almeida, Luís %A Damascelli, Lucio %A Ge, Yuxin %T A few symmetry results for nonlinear elliptic PDE on noncompact manifolds %J Annales de l'I.H.P. Analyse non linéaire %D 2002 %P 313-342 %V 19 %N 3 %I Elsevier %U http://archive.numdam.org/item/AIHPC_2002__19_3_313_0/ %G en %F AIHPC_2002__19_3_313_0
Almeida, Luís; Damascelli, Lucio; Ge, Yuxin. A few symmetry results for nonlinear elliptic PDE on noncompact manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 3, pp. 313-342. http://archive.numdam.org/item/AIHPC_2002__19_3_313_0/
[1] Uniqueness theorem for surfaces in the large, Vestnik Leningrad Univ. Math. 11 (1956) 5-17. | MR
,[2] Symmetry results for positive solutions of some elliptic equations on manifolds, Annals Global Anal. Geom. 18 (2000) 153-170. | MR | Zbl
, ,[3] Symmetry for elliptic equations in a half space, in: Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, pp. 27-42. | MR | Zbl
, , ,[4] Inequalities for second order elliptic equations with applications to unbounded domains. I, Duke Math. J. 81 (1996) 467-494. | MR | Zbl
, , ,[5] Monotonicity for elliptic equations in unbounded Lipshitz domains, Comm. Pure Appl. Math. 50 (1997) 1089-1111. | MR | Zbl
, , ,[6] Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997) 69-94. | Numdam | MR | Zbl
, , ,[7] On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. 22 (1991) 1-39. | MR | Zbl
, ,[8] Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal. 148 (1999) 291-308. | MR | Zbl
, , ,[9] Symmetry of C1 solutions of p-Laplace equations in RN, Advanced Nonlinear Studies 1 (2001) 40-64. | MR | Zbl
, ,[10] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209-243. | MR | Zbl
, , ,[11] Symmetry of positive solutions of nonlinear elliptic equations in RN, Adv. Math., Suppl. Stud. 7A (1981) 369-402. | MR | Zbl
, , ,[12] Introduction à l'analyse non linéaire sur les variétés, Fondations, Diderot Editeur, Paris, 1997. | Zbl
,[13] Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, 1635, Springer-Verlag, Berlin, 1996. | MR | Zbl
,[14] Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations 16 (1991) 585-615. | MR | Zbl
,[15] Radial symmetry of positive solutions of nonlinear elliptic equations in RN, Comm. Partial Differential Equations 18 (1993) 1043-1054. | MR | Zbl
, ,[16] A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971) 304-318. | MR | Zbl
,[17] Symmetry of ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal. 148 (1999) 265-290. | MR | Zbl
, ,[18] Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Differential Integral Equations 8 (1995) 1911-1922. | MR | Zbl
,[19] On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations 1 (1996) 241-264. | MR | Zbl
,