@article{AIHPC_2003__20_1_107_0, author = {Nakashima, Kimie and Tanaka, Kazunaga}, title = {Clustering layers and boundary layers in spatially inhomogeneous phase transition problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {107--143}, publisher = {Elsevier}, volume = {20}, number = {1}, year = {2003}, mrnumber = {1958164}, zbl = {01901029}, language = {en}, url = {http://archive.numdam.org/item/AIHPC_2003__20_1_107_0/} }
TY - JOUR AU - Nakashima, Kimie AU - Tanaka, Kazunaga TI - Clustering layers and boundary layers in spatially inhomogeneous phase transition problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 107 EP - 143 VL - 20 IS - 1 PB - Elsevier UR - http://archive.numdam.org/item/AIHPC_2003__20_1_107_0/ LA - en ID - AIHPC_2003__20_1_107_0 ER -
%0 Journal Article %A Nakashima, Kimie %A Tanaka, Kazunaga %T Clustering layers and boundary layers in spatially inhomogeneous phase transition problems %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 107-143 %V 20 %N 1 %I Elsevier %U http://archive.numdam.org/item/AIHPC_2003__20_1_107_0/ %G en %F AIHPC_2003__20_1_107_0
Nakashima, Kimie; Tanaka, Kazunaga. Clustering layers and boundary layers in spatially inhomogeneous phase transition problems. Annales de l'I.H.P. Analyse non linéaire, Volume 20 (2003) no. 1, pp. 107-143. http://archive.numdam.org/item/AIHPC_2003__20_1_107_0/
[1] S. Ai, S.P. Hastings, A shooting approach to layers and chaos in a forced duffing equation, I, Preprint. | MR
[2] Semiclassical states of nonlinear Schrödinger equations, Arch. Rat. Mech. Anal. 140 (1997) 285-300. | MR | Zbl
, , ,[3] Stable transition layers in a semilinear boundary value problem, J. Differential Equations 67 (1987) 212-242. | MR | Zbl
, , ,[4] Multiple solutions for a class of nonlinear Sturm-Liouville problems on the half line, J. Differential Equations 85 (1990) 236-275. | MR | Zbl
,[5] Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. PDE 4 (1996) 121-137. | MR | Zbl
, ,[6] Multi-peak bound states of nonlinear Schrödinger equations, Ann. IHP, Analyse Nonlinéaire 15 (1998) 127-149. | Numdam | MR | Zbl
, ,[7] Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (3) (1986) 397-408. | MR | Zbl
, ,[8] Chaotic solutions in slowly varying perturbations of Hamiltonian systems with applications to shallow water sloshing, J. Dynam. Differential Equations 14 (2002) 63-84. | MR | Zbl
, , , ,[9] Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations 21 (1996) 787-820. | MR | Zbl
,[10] Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations 158 (1999) 1-27. | MR | Zbl
, ,[11] Multiple solutions for a class of nonlinear boundary value problems, Indiana Univ. Math. J. 20 (11) (1971) 983-996. | MR | Zbl
,[12] On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations 5 (2000) 899-928. | MR | Zbl
, ,[13] Slowly varying phase planes and boundary-layer theory, Stud. Appl. Math. 72 (3) (1985) 221-239. | MR | Zbl
,[14] On a singularly perturbed elliptic equation, Adv. Differential Equations 2 (1997) 955-980. | MR | Zbl
,[15] K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation, J. Differential Equations, to appear. | MR | Zbl
[16] Stable transition layers in a balanced bistable equation, Differential Integral Equations 13 (2000) 1025-1038. | MR | Zbl
,[17] Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Comm. Partial Differential Equations 13 (1988) 1499-1519. | MR | Zbl
,[18] Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials, Comm. Math. Phys. 121 (1989) 11-33. | MR | Zbl
,[19] On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys. 131 (1990) 223-253. | MR | Zbl
,[20] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992) 270-291. | MR | Zbl
,[21] On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (1993) 229-244. | MR | Zbl
,