Clustering layers and boundary layers in spatially inhomogeneous phase transition problems
Annales de l'I.H.P. Analyse non linéaire, Volume 20 (2003) no. 1, pp. 107-143.
@article{AIHPC_2003__20_1_107_0,
     author = {Nakashima, Kimie and Tanaka, Kazunaga},
     title = {Clustering layers and boundary layers in spatially inhomogeneous phase transition problems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {107--143},
     publisher = {Elsevier},
     volume = {20},
     number = {1},
     year = {2003},
     mrnumber = {1958164},
     zbl = {01901029},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPC_2003__20_1_107_0/}
}
TY  - JOUR
AU  - Nakashima, Kimie
AU  - Tanaka, Kazunaga
TI  - Clustering layers and boundary layers in spatially inhomogeneous phase transition problems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2003
SP  - 107
EP  - 143
VL  - 20
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/item/AIHPC_2003__20_1_107_0/
LA  - en
ID  - AIHPC_2003__20_1_107_0
ER  - 
%0 Journal Article
%A Nakashima, Kimie
%A Tanaka, Kazunaga
%T Clustering layers and boundary layers in spatially inhomogeneous phase transition problems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2003
%P 107-143
%V 20
%N 1
%I Elsevier
%U http://archive.numdam.org/item/AIHPC_2003__20_1_107_0/
%G en
%F AIHPC_2003__20_1_107_0
Nakashima, Kimie; Tanaka, Kazunaga. Clustering layers and boundary layers in spatially inhomogeneous phase transition problems. Annales de l'I.H.P. Analyse non linéaire, Volume 20 (2003) no. 1, pp. 107-143. http://archive.numdam.org/item/AIHPC_2003__20_1_107_0/

[1] S. Ai, S.P. Hastings, A shooting approach to layers and chaos in a forced duffing equation, I, Preprint. | MR

[2] Ambrosetti A., Badiale M., Cingolani S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rat. Mech. Anal. 140 (1997) 285-300. | MR | Zbl

[3] Angenent S.B., Mallet-Paret J., Peletier L.A., Stable transition layers in a semilinear boundary value problem, J. Differential Equations 67 (1987) 212-242. | MR | Zbl

[4] Chen C.-N., Multiple solutions for a class of nonlinear Sturm-Liouville problems on the half line, J. Differential Equations 85 (1990) 236-275. | MR | Zbl

[5] Del Pino M., Felmer P., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. PDE 4 (1996) 121-137. | MR | Zbl

[6] Del Pino M., Felmer P., Multi-peak bound states of nonlinear Schrödinger equations, Ann. IHP, Analyse Nonlinéaire 15 (1998) 127-149. | Numdam | MR | Zbl

[7] Fleor A., Weinstein A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (3) (1986) 397-408. | MR | Zbl

[8] Gedeon T., Kokubu H., Mischaikow K., Oka H., Chaotic solutions in slowly varying perturbations of Hamiltonian systems with applications to shallow water sloshing, J. Dynam. Differential Equations 14 (2002) 63-84. | MR | Zbl

[9] Gui C., Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations 21 (1996) 787-820. | MR | Zbl

[10] Gui C., Wei J., Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations 158 (1999) 1-27. | MR | Zbl

[11] Hemple J.A., Multiple solutions for a class of nonlinear boundary value problems, Indiana Univ. Math. J. 20 (11) (1971) 983-996. | MR | Zbl

[12] Kang X., Wei J., On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations 5 (2000) 899-928. | MR | Zbl

[13] Kath W.L., Slowly varying phase planes and boundary-layer theory, Stud. Appl. Math. 72 (3) (1985) 221-239. | MR | Zbl

[14] Li Y.-Y., On a singularly perturbed elliptic equation, Adv. Differential Equations 2 (1997) 955-980. | MR | Zbl

[15] K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation, J. Differential Equations, to appear. | MR | Zbl

[16] Nakashima K., Stable transition layers in a balanced bistable equation, Differential Integral Equations 13 (2000) 1025-1038. | MR | Zbl

[17] Oh Y.-G., Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Comm. Partial Differential Equations 13 (1988) 1499-1519. | MR | Zbl

[18] Oh Y.-G., Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials, Comm. Math. Phys. 121 (1989) 11-33. | MR | Zbl

[19] Oh Y.-G., On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys. 131 (1990) 223-253. | MR | Zbl

[20] Rabinowitz P.H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992) 270-291. | MR | Zbl

[21] Wang X., On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (1993) 229-244. | MR | Zbl